那个阿里的千问3 (Qwen3)又回来了(附完整使用教程)

大家好,我是樱木。

这周阿里千问3 ,迎来了重磅更新,我们来看看这周的时间线:

7月22日,开源基础模型的 Qwen3 非思考版,在知识、数学、编程、人类偏好对齐、Agent能力等众多测评中表现出色,超越 Claude4(Non-thinking)等领先闭源模型。

7月22日,开源编程模型 Qwen3-Coder,在多语言 SWE-bench、Mind2Web、Aider-Polyglot等模型Agent能力评估中,Qwen3-Coder比肩GPT4.1、Claude4等顶级闭源模型。

7月25日,推理模型 Qwen3,在知识、编程、数学、人类偏好对齐、创意写作、多语言能力等核心能力上,通义千问3推理模型完全可比肩 Gemini-2.5 pro、o4-mini等顶尖闭源模型。

三连发,确实可以消化一阵子了。阿里进入了千问时刻!

以樱木所在的 IT/互联网行业为例,我们使用 Qwen3-Coder 看看编程模型表现如何?

这款编程模型,推特联合创始人 Jack Dorsey 发来了连声赞叹!

千问3 官方网站:https://chat.qwen.ai/

下面我们使用几个例子来看看,到底如何?

1、开发一个百度首页。

输入:生成一个百度首页

预览效果

页面非常逼真了,看不出真假百度页面。

2、制作食堂满意度调查问卷

输入:生成一个食堂满意度调查问卷表单,包含环境卫生、饭菜口感、人员服务态度和打菜份量。表单元素应垂直堆叠并放置在卡片内。

这次的页面,增加了收集意见反馈,更加人性化。

3、程序员个人网站

输入:为程序员创建个人博客,包含个人介绍、教育背景、项目经验、优势特长等部分。

千问3 提供的预览窗口,太小了。

需要把源代码下载下来,看效果。

效果如下:

这个个人介绍页面,中规中矩的。

4、小红书网站

输入:创建一个具有小红书风格设计的内容社交网站。

预览效果,这很小红书呀

写到,樱木觉得这次千问3 的模型更新能力,是在踏实干活的。

总体和上一个版本,樱木写的文章 刷屏的千问3( Qwen3),到底怎么样?,对比了下,模型能力进化很多,页面效果更美观,美中不足的是预览模式,不是特别好用,有时还得下载下来,才能看到全的预览效果。

希望下次千问3 的产品,会有更友好用户的体验。

好啦,今天的分享就到这里了。有帮助的帮忙点个赞。

  AI 系列入门手把手教程:AI教程合集

我是樱木,持续探索 AI 领域,主要分享最新的 AI 工具动态,评测,提效。

### 关于通义 Qwen3 的具体使用方法 #### 一、概述 通义Qwen)是由阿里云开发的一系列大语言模型之一,其具有强大的自然语言处理能力以及广泛的适用场景。对于 Qwen3 版本,虽然具体的版本特性可能有所不同,但总体上仍然遵循通用的大模型操作流程[^2]。 #### 二、环境准备 为了顺利运行和微调 Qwen3 模型,需完成以下准备工作: 1. **安装依赖库** 用户需要先安装必要的 Python 库来支持模型加载与推理功能。可以通过 pip 安装如下核心包: ```bash pip install transformers datasets accelerate torch ``` 2. **获取 API 密钥或访权限** 如果计划通过云端服务调用 Qwen3,则需要申请并配置相应的 API Key 或者其他认证凭证[^1]。 #### 三、模型加载与初始化 以下是加载 Qwen3 模型的一个基本示例代码片段: ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen3") # 替换为实际路径或HuggingFace Hub上的名称 model = AutoModelForCausalLM.from_pretrained("qwen/Qwen3") def generate_text(prompt, max_length=50): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate(inputs, max_length=max_length, num_return_sequences=1) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return result ``` 此部分展示了如何从 Hugging Face Model Hub 加载预训练好的 Qwen3 并定义了一个简单的文本生成函数[^2]。 #### 四、微调过程详解 当希望针对特定领域或者任务进一步优化 Qwen3 表现时,可以采用低代码方式进行微调。主要步骤包括但不限于以下几个方面: 1. **设定计算资源** 开发人员应当依据项目需求合理分配 GPU/CPU 资源数量,并指定对应的灵骏平台资源配额 ID。 ```python est.resource_id = "<LingjunResourceQuotaId>" # 设置资源ID ``` 2. **调整超参数** 微调过程中涉及多个重要超参数的选择,比如学习率 (`learning_rate`) 和保存间隔(`save_interval`) 等。这些都会直接影响最终效果及收敛速度。 ```python hps = { "learning_rate": 1e-5, "save_interval": 500, } est.set_hyperparameters(**hps) # 应用所选超参组合 ``` 3. **启动训练作业** 将以上配置完成后即可提交至 PAI 控制台执行正式训练阶段[^1]。 #### 五、注意事项 - 数据质量至关重要,在开始任何训练前务必清洗好输入样本集; - 对于敏感行业应用建议加密传输所有交互数据以防泄露风险; - 不同硬件环境下性能表现可能存在差异,请提前测试验证最佳实践方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值