又一个18号

又一个18号了,我给大家汇报一下进展

今天是2月18日,再有一个月,就创业满一年了。我等3月18日再做一个全面的一年总结,今天只做一个1月18日到2月18日这一个月的进展总结。

(1)技术

天时酬勤,一月份,很多模型发布了新版本,我们经过验证后统统都做了升级:
Timer
TimeMoE
TimesFM
DeepSeek

水涨船高、站在巨人肩膀上。
我们哼哧哼哧提升1%,都不如基座向上抬升1%。

经过升级、经过调参,确实效果挺明显。

(2)产品

我们增加了新的业绩度量方法:均价法。
过去我们有三种度量方法:
T+1到T+6的头尾涨幅法
T+1到T+6的最佳买卖法
头尾涨幅法和最佳买卖法的平均平衡法

我们未来还会增加更多的度量方法(比如金融业常用的夏普比率/IC/RC等等),也无所谓哪种度量方法谁对谁错,横看成岭侧成峰,站在每个角度都有它对的地方和存在的理由。
就如同我们未来仍然会持续扩展我们的因子,多种角度刻画一只股票。
就如同我们未来仍然会持续扩展我们的模型,多视角赛马预测股池。

(3)业务

与林总推进了股票型基金的合作。
这符合我们一直的对标模式:
国内:幻方科技+九章基金
国外:文艺复兴科技+大奖章基金

这样,
既符合未来发展模式,又避免了我们拿金融牌照、成立基金公司的高成本低效率路径。
既能快速实战拉升我们产品的成熟度,又能直接产生现金流,不用担心融资压力。

(4)机制

这一个月有个很欣喜的进步就是:所有的机器模型都超越了专家模型。

我过去曾说过一个发展四阶段:
第一阶段:以专家模型为主做从零到一的冷启动,以机器模型为辅
第二阶段:机器模型和专家模型互相对抗、互相参照、螺旋进化
第三阶段:以机器模型为主,专家模型为辅。机器模型提供基础股池,专家模型做增强过滤。这有点像指数增强
第四阶段:以机器模型为主,人民群众智慧为辅。有限的团队-有限的团队智慧、机器模型,永远对抗不了千变万化的人性,股票之所以测不准就是因为股性的本质是操作股票的人的人性在千变万化。所以这就是我们要做小程序产品的原因

所以,从发展阶段来看,我们开始迈入第三阶段。

(5)成长感悟

俗话说:公司创始人的天花板就是一个公司的天花板。
我过去也说过:投资人投的也是领导人物和团队、投的是产业前景和商业模式。你投我,是对我长期的朋友的人品、能力、格局、认知的信任。

一、运营哲学
道:方向、路径
法:机制、方法论
术:专业知识、实战经验
器:技术、工具

不过在道上面,我感觉还是天时地利人和:
天时:时代。这是命
人和:上有贵人(人生三大运)提携、下有团队鼎力支持

有天时命在,有人和运在,有现金流在,其他就主要是:
道(方向、路径)和法(机制、方法论)的正确了。
至于术和器,那是日拱一卒的事了。

我们的道(方向、路径)已经比较清晰,我们主要就是用法(机制、方法论)来解决重大问题,而不是通过日拱一卒来解决重大问题。

我昨天又在看长征,我们的产品里程碑代号也进入了长征,暂时还未到达遵义。
中央红军八万多人,刚刚出发一个多月就血染湘江,人员就锐减到三万人,大家都惊慌失措。
又这样惊慌失措地逃亡了一个月,才到达遵义,召开了重大的遵义会议。
感觉遵义会议的总结过去教训那是相当的到位:
1、军事指挥上的机械主义:
强化军事顾问绝对权威,取消党委集体领导制度。
剥夺下级指挥官的临机处置权,导致军事指挥僵化,无法灵活应对战场变化。

2、防御中的保守主义:
放弃过去有效的运动战和游击战,转而采取固守的阵地战和堡垒战的战术,与国民党军队拼消耗。

3、进攻中的冒险主义:
在第五次反“围剿”中,主张“御敌于国门之外”,要求红军在根据地之外与国民党军队决战。
而且希望短促闪击,因而采取先发制人的进攻战略,但忽视敌强我弱的客观现实。

4、转移中的逃跑主义:
在战略转移(长征)初期,表现为惊慌失措,转移前未进行充分的政治动员和军事准备。

二、技术哲学
春节期间,我看了许多论文,有一点小感悟。

在预训练大模型方面,还是非常有效果,如结构性数据模型(Timer模型、TimeMoE模型)、非结构性数据模型(DeepSeek模型),经过调参,效果一跃而上。
在深度学习模型方面,站在股票这个领域,高质量海量数据还是显得少了,所以复杂的Transformer模型反而发挥不出来它应有的价值。经过观察,反而现在走向以下七要素,效果更好:
1、MoE架构:专家更能深入且高效率地解决问题。统一大模型架构:更能触类旁通、融会贯通,往往会有意想不到的创新发现。
2、MLP内核:就连2017年Transformer发明时,也没有采取90年代出现的CNN、LSTM,而是采取了80年代的前馈神经网络。而我感觉对于高质量小数据,前馈神经网络都够复杂了,不如更倒退到MLP内核。
3、小波变换算法:小波变换提供时间和频率的多分辨率分析,并且具有“变焦”特性,可根据信号特征调整时间与频率分辨率,适合非平稳信号。
4、Patch包机制:通过将时间序列划分为多个子序列(Patch),模型能够更好地捕捉局部特征。
5、注意力机制:注意力机制能够动态地分配权重,捕捉时间序列中的长短期依赖关系。
6、归一化机制:归一化可以将数据缩放到统一的范围,减少数据的尺度差异,提高模型的训练稳定性。
7、残差连接机制:残差连接确保模型将输入传递到后续层时不会丢失重要信息,既避免深层网络中的梯度消失问题,又提高了效果。

未来的模型进化,不外乎是这7种要素的排列组合、参数的多寡调节。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值