原作者:擎创科技产品专家 布博士
案例分享
所需要的软件列表
本次案例的实现,全部采用开源或SAAS的产品来提供,并不涉及到私有化部署的软件产品。软件列表如下所示,如何申请apikey请自行研究,在这里不再详细说明:
以上软件只是实现该系统的作者推荐列表,在实际的应用中有很多开源、saas、商业版本的软件产品供使用,在这里不再详说明,各位可以根据自己企业的性质自行选择合作的解决方案产品。
私有化知识样例说明
由于采用大模型对私有化的知识库数据进行智能问答和知识库系统的实现,因此需要说明私有化知识提供给大模型时一般采取什么格式,会取得比较好的效率。
通常情况下,可以支持各种文档数据,包括work、pdf、markdown、json等,在flowise中都有相应的解析组件可以完成解析,本例中我采用jsons格式,最佳格式是包括两个字段内容prompt和completion,这样大模型可以比较容易识别为“问题”和“答案”。如下示例所示:
{
"prompt": "Redis内存使用率高",
"completion": "Redis内存使用率高可能是由于数据存储的增长或未使用的数据未过期引起的。需要定期清理不必要的数据、优化内存配置以减少内存使用率。"
}
注意:在实际应用中,一定要考虑如果一份文档中包括多个知识点,如何做知识点切分的情况,因此建议采用json格式的数据,比较容易切分,一个“{}”即为一个知识点,pdf、word格式的知识块切分,可自行探索。
在告警的场景中,可以将告警的内容抽象成一段简单明了的问题存放到prompt字段中,将针对该事件的分析及处置过程整理到completion字段中,completion中可以详细记录产生问题的场景报错信息、问题产生的原因、解决的办法等信息,这样可以提供给大模型更好的推理能力。下面有一份Atlassian的产品报障信息及处置结果的总结,供参考:
-
圈1:标题,即为prompt字段的问题
-
剩下的问题、原因、解决方案,都可以放到completion字段中
准备知识数据
在开始之前需要先要有知识数据,本例我们为事件管理的智能问答系统,即在统一事件管理的工作台,事件分析及处置人员在对事件进行处置时,可以直接使用大模型推送的知识,并可以通过反覆盖的交互来完成问题的排查过程。
由