Pandas统计列NaN值,这4步轻松搞定!

在数据分析时,Pandas提供了一种高效的方法来处理DataFrame中的NaN值。首先使用.isna()函数标记NaN,然后通过.sum()求和得到每列的NaN数量。若要单独统计某一列,只需指定列名。通过这两个步骤,可以快速了解DataFrame中任意列的缺失值情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Pandas分析和处理数据的过程中,我们常常需要关注DataFrame中NaN值的出现情况。那么如何 high起来计算Pandas DataFrame某列或所有列中的NaN值呢?


下面介绍Pandas统计列NaN值的4大步骤:
第一步:使用.isna()标记NaN

df.isna() 

使用.isna()方法可以将DataFrame中的NaN值标记出来。


第二步:.sum()计算标记值

df.isna().sum()

使用.sum()方法可以对标记后的NaN值进行求和,得到每个列NaN出现的次数。


第三步:选择单列或所有列
要统计单列NaN,选择['colname']

df['col1'].isna().sum()

要统计所有列NaN,直接对DataFrame使用.isna().sum()

df.isna().sum()

第四步:输出结果
最终输出每个列NaN出现的次数,如:

col1    1
col2    2
col3    0 
dtype: int64

这就是Pandas统计列NaN值的4大步骤,掌握这4步,我们可以轻松检测DataFrame中任意列的NaN情况。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

devid008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值