import tensorflow as tf import numpy as np from keras import Model from keras.layers import * from sklearn.model_selection import train_test_split in_flow= np.load("X_in_30od.npy") out_flow= np.load("X_out_30od.npy") c1 = np.load("X_30od.npy") D1 = np.load("Y_30od.npy") in_flow = Reshape(in_flow, (D1.shape[0], 5, 109, 109)) out_flow = Reshape(out_flow, (D1.shape[0], 5, 109)) c1 = Reshape(c1, (D1.shape[0], 5, 109)) X_train, X_test, y_train, y_test = train_test_split((in_flow, out_flow, c1), D1, test_size=0.2, random_state=42) X_train, X_val, y_train, y_val = train_test_split(X_train,y_train, test_size=0.2, random_state=42) input_od=Input(shape=(5,109,109)) x1=Reshape((5,109,109,1),input_shape=(5,109,109))(input_od) x1=ConvLSTM2D(filters=64,kernel_size=(3,3),activation='relu',padding='same',input_shape=(5,109,109,1))(x1) x1=Dropout(0.2)(x1) x1=Dense(1)(x1) x1=Reshape((109,109))(x1) input_inflow=Input(shape=(5,109)) x2=Permute((2,1))(input_inflow) x2=LSTM(109,return_sequences=True,activation='sigmoid')(x2) x2=Dense(109,activation='sigmoid')(x2) x2=tf.multiply(x1,x2) x2=Dense(109,activation='sigmoid')(x2) input_inflow2=Input(shape=(5,109)) x3=Permute([2,1])(input_inflow2) x3=LSTM(109,return_sequences=True,activation='sigmoid')(x3) x3=Dense(109,activation='sigmoid')(x3) x3 = Reshape((109, 109))(x3) x3=tf.multiply(x1,x3) x3=Dense(109,activation='sigmoid')(x3) mix=Add()([x2,x3]) mix=Bidirectional(LSTM(109,return_sequences=True,activation='sigmoid'))(mix) mix=Dense(109,activation='sigmoid')(mix) model= Model(inputs=[input_od,input_inflow,input_inflow2],outputs=[mix]) model.compile(optimizer='adam', loss='mean_squared_error') history = model.fit([X_train[:,0:5,:,:], X_train[:,5:10,:], X_train[:,10:15,:]], y_train, validation_data=([X_val[:,0:5,:,:], X_val[:,5:10,:], X_val[:,10:15,:]], y_val), epochs=10, batch_size=32) test_loss = model.evaluate([X_test[:,0:5,:,:], X_test[:,5:10,:], X_test[:,10:15,:]], y_test) print("Test loss:", test_loss) 程序的运行结果为Traceback (most recent call last): File "C:\Users\liaoshuyu\Desktop\python_for_bigginer\5.23.py", line 11, in <module> in_flow = Reshape(in_flow, (D1.shape[0], 5, 109, 109)) TypeError: Reshape.__init__() takes 2 positional arguments but 3 were given 怎么修改