Huber Loss 介绍

本文介绍了HuberLoss损失函数,一种用于回归问题的带参损失函数。HuberLoss结合了平方误差损失函数对小误差敏感的优点及线性误差损失函数对大误差不敏感的特点,能够有效降低离群点的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Huber Loss 是一个用于回归问题的带参损失函数, 优点是能增强平方误差损失函数(MSE, mean square error)对离群点的鲁棒性。

当预测偏差小于 δ 时,它采用平方误差,
当预测偏差大于 δ 时,采用的线性误差。

相比于最小二乘的线性回归,HuberLoss降低了对离群点的惩罚程度,所以 HuberLoss 是一种常用的鲁棒的回归损失函数。

Huber Loss 定义如下:

 

 参数 a 通常表示 residuals,写作 y−f(x),当 a = y−f(x) 时,Huber loss 定义为:

 

 δ 是 HuberLoss 的参数,y是真实值,f(x)是模型的预测值, 且由定义可知 Huber Loss 处处可导.

 

转自:https://www.cnblogs.com/nowgood/p/Huber-Loss.html

 

转载于:https://www.cnblogs.com/z1141000271/p/11493639.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值