最长公共子串

本文介绍了一种求解两个字符串最长公共子串的算法,时间复杂度为O(m*n),其中m和n分别为两字符串的长度。通过动态规划方法,使用二维数组dp记录状态,dp[i][j]表示以A[i]和B[j]结尾的最长公共子串长度。当A[i]==B[j]时,dp[i][j]=dp[i-1][j-1]+1;否则dp[i][j]=0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

对于两个字符串,请设计一个时间复杂度为O(m*n)的算法(这里的m和n为两串的长度),求出两串的最长公共子串的长度。这里的最长公共子串的定义为两个序列U1,U2,..Un和V1,V2,...Vn,其中Ui + 1 == Ui+1,Vi + 1 == Vi+1,同时Ui == Vi。

给定两个字符串AB,同时给定两串的长度nm

测试样例:"1AB2345CD",9,"12345EF",7            返回:4
 
 
我的代码:
    int findLongest(string A, int n, string B, int m) {
        // write code here
        int dp[510][510] = {0};
        int res = 0;
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= m; j++)
            {
                if(A[i-1]==B[j-1])
                    dp[i][j] = dp[i-1][j-1]+1;
                else
                    dp[i][j] = 0;
                if(dp[i][j] > res)
                    res = dp[i][j];
            }
        }
        return res;
    }

思路:

1.设计dp数组

dp[i][j] 为字符串A以第i个字符为结尾和字符串B以第j个字符为结尾的最大公共子串长度。

2.设计状态转移方程

dp[i][j] = dp[i-1][j-1] +1或者dp[i][j] = 0;第i个字符和第j个字符相同则+1;不同则置为0;

最大公共子串为dp[i][j] 的最大值

3.确定初始状态

全部为0

4.验证

转载于:https://www.cnblogs.com/Lune-Qiu/p/9018911.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值