Group Convolution分组卷积
最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下:
Group Convolution 原理
如果输入feature map尺寸为
C
∗
H
∗
W
C*H*W
C∗H∗W,卷积核有N个,输出feature map与卷积核的数量相同也是N,每个卷积核的尺寸为
C
∗
K
∗
K
C*K*K
C∗K∗K,N个卷积核的总参数量为
N
∗
C
∗
K
∗
K
N*C*K*K
N∗C∗K∗K。如下图所示,传统卷积方法和分组卷积方法。
Group Convolution,则是对输入feature map进行分组,然后每组分别卷积。其实也就是,原本应该是
C
∗
H
∗
W
C*H*W
C∗H∗W 的图片,用N个传统的卷积核
C
∗
K
∗
K
C*K*K
C∗K∗K,就可以生成
N
∗
H
∗
W
N*H*W
N∗H∗W(假设经过池化,图片尺寸不变)这样其实,是一个通道为C来进行整体卷积生成一个图片。而分组卷积,是一个通道为
C
G
\frac{C}{G}
GC来进行整体卷积生成一个图片。
具体来说就是,假设输入feature map的尺寸仍为
C
∗
H
∗
W
C*H*W
C∗H∗W,输出feature map的数量为N个,如果设定要分成G个groups,则每组的输入feature map数量为
C
G
\frac{C}{G}
GC,每组的输出feature map数量为
N
G
\frac{N}{G}
GN,每个卷积核的尺寸为
C
G
∗
K
∗
K
\frac{C}{G}*K*K
GC∗K∗K,卷积核的总数仍为N个,每组的卷积核数量为
N
G
\frac{N}{G}
GN,卷积核只与其同组的输入map进行卷积,卷积核的总参数量为
N
∗
C
G
∗
K
∗
K
N∗\frac{C}{G}*K*K
N∗GC∗K∗K,可见,总参数量减少为原来的
1
G
\frac{1}{G}
G1。
Group Convolution的用途
- 减少参数量,分成G组,则该层的参数量减少为原来的 1 G \frac{1}{G} G1
- Group Convolution可以看成是structured sparse,每个卷积核的尺寸由 C ∗ K ∗ K C*K*K C∗K∗K 变为 C G ∗ K ∗ K \frac{C}{G}*K*K GC∗K∗K,可以将其余 ( C − C G ) ∗ K ∗ K (C−\frac{C}{G})*K*K (C−GC)∗K∗K的参数视为0,有时甚至可以在减少参数量的同时获得更好的效果(相当于正则)。
参考文献
https://www.cnblogs.com/shine-lee/p/10243114.html