基于pyspark的北京历史天气数据分析及可视化_离线

基于pyspark的北京历史天气数据分析及可视化

项目概况

[👇👇👇👇👇👇👇👇]
点这里,查看所有项目
[👆👆👆👆👆👆👆👆]

数据类型

北京历史天气数据

开发环境

centos7

软件版本

python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8

开发语言

python

开发流程

数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(html+js+css)

可视化图表

在这里插入图片描述

操作步骤

python安装包


pip3 install pandas==2.0.3 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask==3.0.0 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install flask-cors==4.0.1 -i https://mirrors.aliyun.com/pypi/simple/
pip3 install pymysql==1.1.0 -i https://mirrors.aliyun.com/pypi/simple/

启动MySQL


# 查看mysql是否启动 启动命令: systemctl start mysqld.service
systemctl status mysqld.service
# 进入mysql终端
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
# MySQL的用户名:root 密码:123456
mysql -uroot -p123456

启动Hadoop


# 离开安全模式: hdfs dfsadmin -safemode leave
# 启动hadoop
bash /export/software/hadoop-3.2.0/sbin/start-hadoop.sh

准备目录


mkdir -p /data/jobs/project/
cd /data/jobs/project/

# 上传 "data" 目录下的 "beijing_weather_data.csv" 文件

上传文件到hdfs


cd /data/jobs/project/

hdfs dfs -mkdir -p /data/source/
hdfs dfs -rm -r /data/source/*
hdfs dfs -put -f beijing_weather_data.csv /data/source/
hdfs dfs -ls /data/source/

创建MySQL表


cd /data/jobs/project/

# 上传 "mysql.sql" 文件

# 请确认mysql服务已经启动了
# 快速执行.sql文件内的sql语句
mysql -u root -p < mysql.sql

spark数据分析


cd /data/jobs/project/

# 上传 "pyspark" 目录下的 "data_process.py" 文件

spark-submit \
--master local[*] \
--packages com.mysql:mysql-connector-j:8.0.33 \
/data/jobs/project/data_process.py /data/source/

启动可视化


mkdir -p /data/jobs/project/myapp/
cd /data/jobs/project/myapp/

# 上传 "可视化" 目录下的 "所有" 文件和文件夹

# windows本地运行: python app.py
python3 app.py pro

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值