第1关:求图(邻接矩阵存储)最短路径的狄克斯特拉算法

任务描述
相关知识
狄克斯特拉算法思想
实现狄克斯特拉算法
编程要求
测试说明
任务描述
本关任务:图的存储结构为邻接矩阵,要求编写函数实现狄克斯特拉算法。

相关知识
求带权有向图最短路径问题分为两种情况:求从一个顶点到其他各顶点的最短路径,称之为单源最短路径问题;求每对顶点之间的最短路径,称之为多源最短路径问题。

求单源最短路径算法是由狄克斯特拉(Dijkstra)提出的,称为狄克斯特拉算法,是一个按路径长度递增的顺序逐步产生最短路径的方法。

狄克斯特拉算法思想
给定一个图G和一个起始顶点即源点v,求v到其他顶点的最短路径长度及最短路径。

① 初始时,顶点集S只包含源点,即S={v 
0

 },顶点v 
0

 到自已的距离为0。顶点集T包含除v 
0

 外的其他顶点,源点v 
0

 到T中顶点i的距离为边上的权(若v 
0

 与i有边<v 
0

 ,i>)或∞(若顶点i不是v 
0

 的出边相邻点)。

② 从T中选取一个顶点u,它是源点v 
0

 到U中距离最小的一个顶点,然后把顶点u加入S中(该选定的距离就是源点v 
0

 到顶点u的最短路径长度)。

③ 以顶点u为新考虑的中间点,修改源点v 
0

 到U中各顶点j(j∈T)的距离。

重复步骤②和③直到S包含所有的顶点即T为空。

实现狄克斯特拉算法
设置一个数组dist[0..n-1],dist[i]用来保存从源点v 
0

 到顶点i的目前最短路径长度。

path[j]保存源点到顶点j的最短路径,实际上为最短路径上的前一个顶点u,即path[j]=u。

当求出最短路径后由path[j]向前推出源点到顶点j的最短路径。

举例,有如下有向图,求从0到其余顶点的最短路径:


下表给出了上述有向网G中从源点0到其余各顶点的最短路径的求解过程。

最后求出顶点0到1~6各顶点的最短距离分别为4、5、6、10、9和16。

以求顶点0到顶点4的最短路径为例说明通过path求最短路径的过程:
path[4]=5,path[5]=2,path[2]=1,path[1]=0(源点),
则顶点0到顶点4的最短路径逆为4、5、2、1、0,则正向最短路径为0→1→2→5→4。

void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) //输出从顶点v出发的所有最短路径
{
    int i,j,k,count=0;
    int apath[MAX_VERTEX_NUM],d;                //存放一条最短路径(逆向)及其顶点个数
    for (i=0;i<g.vexnum;i++)
        if (path[i]!=-1)
            count++;
    if (count==1)                        //path中只有一个不为-1时表示没有路径
    {    printf("从指定的顶点到其他顶点都没有路径!!!\n");
        return;
    }
    for (i=0;i<g.vexnum;i++)                    //循环输出从顶点v到i的路径
        if (S[i]==1 && i!=v)
        {
            //printf("从%s到%s最短路径长度为:%s\t路径:",g.vexs [v],g.vexs[i],dist[i]);
            cout<<"从"<<g.vexs [v]<<"到"<<g.vexs[i]<<"最短路径长度为:"<<dist[i]<<"\t";
            d=0;             apath[d]=i;            //添加路径上的终点
            k=path[i];
            if (k==-1)                    //没有路径的情况
                printf("无路径\n");
            else                        //存在路径时输出该路径
            {    while (k!=v)
                {    d++; apath[d]=k;
                    k=path[k];
                }
                d++; apath[d]=v;        //添加路径上的起点
                //printf("%d",apath[d]);    //先输出起点
                cout<<g.vexs [ apath[d] ];
                for (j=d-1;j>=0;j--)    //再输出其他顶点
                    //printf("→%d",apath[j]);
                    cout<<"→"<<g.vexs [ apath[j] ];
                printf("\n");
            }
        }
}
void Dispdistpath(int dist[],int path[],int n)    //输出dist数组和path数组
{
    int i;
    printf("dist:\t");
    for (i=0;i<n;i++)
        if (dist[i]==INFINITY)
            printf("%s\t","∞");
        else
            printf("%d\t",dist[i]);
    printf("\n");
    printf("path:\t");
    for (i=0;i<n;i++)
        printf("%d\t",path[i]);
    printf("\n");
}
狄克斯特拉算法的时间复杂度为O(n 
2
 )。

编程要求
网G的存储结构为邻接矩阵,编写函数利用狄克斯特拉(Dijkstra))求图的单源最短路径:

void Dijkstra(MGraph g,int v); //求从v到其他顶点的最短路径
测试说明
平台会对你编写的代码进行测试:

测试输入:

lt4.txt 

输入说明:
第一行输入1,表示输入图的类型为有向网。
第二行输入文件名,该文件里保存了图的数据信息,内容如下:
7
12
0
1
2
3
4
5
6
0 1 4
0 2 6
0 3 6
1 2 1
1 4 6
2 4 6
2 5 4
3 2 2
3 5 5
4 6 6
5 4 1
5 6 8
第1行为图的顶点的个数n;
第2行为图的边的条数m;
第3行至第n+2行是n个顶点的数据;
第n+3行至第n+m+2行是m条边的数据;

预期输出:
有向网
7个顶点12条边。顶点依次是: 0 1 2 3 4 5 6 
图的邻接矩阵:
∞    4    6    6    ∞    ∞    ∞
∞    ∞    1    ∞    6    ∞    ∞
∞    ∞    ∞    ∞    6    4    ∞
∞    ∞    2    ∞    ∞    5    ∞
∞    ∞    ∞    ∞    ∞    ∞    6
∞    ∞    ∞    ∞    1    ∞    8
∞    ∞    ∞    ∞    ∞    ∞    ∞
dist:    ∞    4    6    6    ∞    ∞    ∞
path:    -1    0    0    0    -1    -1    -1
dist:    ∞    4    5    6    10    ∞    ∞
path:    -1    0    1    0    1    -1    -1
dist:    ∞    4    5    6    10    9    ∞
path:    -1    0    1    0    1    2    -1
dist:    ∞    4    5    6    10    9    ∞
path:    -1    0    1    0    1    2    -1
dist:    ∞    4    5    6    10    9    17
path:    -1    0    1    0    1    2    5
dist:    ∞    4    5    6    10    9    16
path:    -1    0    1    0    1    2    4
dist:    ∞    4    5    6    10    9    16
path:    -1    0    1    0    1    2    4
从0到1最短路径长度为:4    0→1
从0到2最短路径长度为:5    0→1→2
从0到3最短路径长度为:6    0→3
从0到4最短路径长度为:10    0→1→4
从0到5最短路径长度为:9    0→1→2→5
从0到6最短路径长度为:16    0→1→4→6

输出说明:
第一行输出图的类型。
第二部分起输出图的顶点和边的数据信息。
第三部分输出辅助数组的变化过程。
第四部分输出从起点到其余各顶点的最短路径。

开始你的任务吧,祝你成功!

#include<stdio.h> 
#include<stdlib.h> 
#include<string.h>
#include<limits.h>  
#include<iostream>
using namespace std;
#include"MGraph.h"


void Dijkstra(MGraph g,int v);		//求从v到其他顶点的最短路径
void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) ;//输出从顶点v出发的所有最短路径
void Dispdistpath(int dist[],int path[],int n);	//输出dist数组和path数组

int main()
{
	MGraph g;
	int i,j,n;
	CreateGraphF(g);           /* 利用数据文件创建有向图*/
	Display(g);	/* 输出有向图*/  
	Dijkstra(g,0);	
	return 0;
}


void Dijkstra(MGraph g,int v)		
{	
    //求从v到其他顶点的最短路径
    /********** Begin **********/
int min,num,dist[MAX_VERTEX_NUM],path[MAX_VERTEX_NUM],s[MAX_VERTEX_NUM];
    for(int i=0;i<g.vexnum;i++)
    {
        dist[i]=g.arcs[v][i].adj;
        if(dist[i]!=INFINITY)
        {
            path[i]=v;
        }else{
            path[i]=-1;
        }
    }
    for(int i=0;i<g.vexnum;i++)
    {
        s[i]=0;
    }
    s[v]=1;
    num=1;
    while(num<g.vexnum)
    {
        int mini=INFINITY,m;
        for(int i=0;i<g.vexnum;i++)
        {
            if(s[i]==0&&dist[i]<mini)
            {
                mini=dist[i];
                m=i;
            }
        }
        s[m]=1;
        Dispdistpath(dist,path,g.vexnum);
        for(int i=0;i<g.vexnum;i++)
        {
            if(s[i]==0&&(dist[i]>dist[m]+g.arcs[m][i].adj))
        {
dist[i]=dist[m]+g.arcs[m][i].adj;
path[i]=m;
        }
        }
        num++;
    }
    Dispdistpath(dist,path,g.vexnum);
    DispAllPath(g,dist,path,s,v);


    /********** End **********/
}

void DispAllPath(MGraph &g,int dist[],int path[],int S[],int v) //输出从顶点v出发的所有最短路径
{
	int i,j,k,count=0;
	int apath[MAX_VERTEX_NUM],d;				//存放一条最短路径(逆向)及其顶点个数
	for (i=0;i<g.vexnum;i++)
		if (path[i]!=-1)
			count++;
	if (count==1)						//path中只有一个不为-1时表示没有路径
	{	printf("从指定的顶点到其他顶点都没有路径!!!\n");
		return;
	}
	for (i=0;i<g.vexnum;i++)					//循环输出从顶点v到i的路径
		if (S[i]==1 && i!=v)
		{
			//printf("从%s到%s最短路径长度为:%s\t路径:",g.vexs [v],g.vexs[i],dist[i]);
			cout<<"从"<<g.vexs [v]<<"到"<<g.vexs[i]<<"最短路径长度为:"<<dist[i]<<"\t";
			d=0; 			apath[d]=i;			//添加路径上的终点
			k=path[i];
			if (k==-1)					//没有路径的情况
				printf("无路径\n");
			else						//存在路径时输出该路径
			{	while (k!=v)
				{	d++; apath[d]=k;
					k=path[k];
				}
				d++; apath[d]=v;		//添加路径上的起点
				//printf("%d",apath[d]);	//先输出起点
				cout<<g.vexs [ apath[d] ];
				for (j=d-1;j>=0;j--)	//再输出其他顶点
					//printf("→%d",apath[j]);
					cout<<"→"<<g.vexs [ apath[j] ];
				printf("\n");
			}
		}
}


void Dispdistpath(int dist[],int path[],int n)	//输出dist数组和path数组
{
	int i;
	printf("dist:\t");
	for (i=0;i<n;i++)
		if (dist[i]==INFINITY)
			printf("%s\t","∞");
		else
			printf("%d\t",dist[i]);
	printf("\n");
	printf("path:\t");
	for (i=0;i<n;i++)
		printf("%d\t",path[i]);
	printf("\n");
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值