小世界网络模型

一、小世界网络模型

1、WS小世界模型

在这里插入图片描述
我们在前面的文章中介绍过,上图(a)所示的完全规则的最近邻耦合网络具有较高的聚类特性,但并不具有较短的平均距离。另一方面,完全随机的ER随机图虽然具有小的平均路径长度却没有高聚类特性。因此,规则的最近邻网络和ER随机图都不能再现许多实际网络同时具有的明显聚类和小世界特征。从直观上看,毕竟大部分实际网络并不是完全规则或完全随机的。
WS小世界模型构造算法:
(1)从规则图开始:给定一个含有N个点的环状最近邻耦合网络,其中每个节点都与它左右相邻的各K/2个节点相连,K是偶数。
(2)随机化重连:以概率p随机地重新连接网络中原有地每条边,即把每条边的一个端点保持不变,另一个端点改取为网络中随机选择的一个节点。其中规定不得有重边或者自环。
在上述模型中,p=0对应于完全规则网络,p=1对应于完全随机网络,通过调节参数p的值就可以实现从规则网络到随机网络的过渡。

2、仿真分析

由上述构造模型算法得到的WS模型的聚类系数C§和平均路径长度L§都可看作是重连概率p的函数。
在这里插入图片描述
上图显示了在给定参数N=1000,K=10下,网络的聚类系数和平均路径长度随重连概率p的变化关系。
上图的一些科学处理方法值得我们学习:
(1)归一化处理:图中并没有直接画出C§和L§,而是对这两个量做了归一化处理,即为C§/C(0),L§/L(0),从而使得两个量的最大值均为1。一般而言,要把不同的量的变化趋势绘制在同一张图中,应该尽可能使得这些量具有统一的尺度。
(2)对数化坐标,图中横坐标取得是对数坐标。这是因为这里重点关注的是p较小时的聚类系数和平均路径长度的变化情形,采用对数坐标的好处就在于可以在横轴上把较小p值的刻度拉宽而压缩较大p值的区间。
(3)平均化处理:考虑到随机性,图中的数据是20次平均的结果。一般而言,在做含有随机性的实验时,应尽可能考虑做多次实验然后取平均,从而保证所得到的结果的合理性。
上图中当p从零开始增大时,随机重连后的网络的聚类系数下降缓慢但平均路径长度却下降很快。即当p较小时
在这里插入图片描述
这意味着,当重连概率p较小时,网络即具有较短的平均路径长度又具有较高的聚类系数。

3、实验验证

前人们在仿真分析后计算了3个实际网络的平均路径长度L

参考文献

https://cloud.tencent.com/developer/article/1135440
https://www.douban.com/note/243931510/?_i=97792683XaUBRs,00422933XaUBRs
https://baike.baidu.com/item/%E5%B0%8F%E4%B8%96%E7%95%8C%E7%BD%91%E7%BB%9C/5401916
https://baike.baidu.com/item/%E5%B0%8F%E4%B8%96%E7%95%8C%E7%BD%91%E7%BB%9C%E6%A8%A1%E5%9E%8B/9630554?fr=aladdin

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值