并查集,加最小生成树技巧。循环搜索边的最大权值,如果边两边是需要隔离开的,则删除该边。
直接考虑原问题比较困难,我们可以这么想:删去的最少=留下来的最多。
那么我们考虑用类似于最小生成树的思想。在使用Kruskal算法时,并查集还要保存一个是否已经有敌人的城市。然后合并的时候必须要两个集合不是都有敌人的城市(最多只有一个集合有敌人的城市)才可以合并。
#include<cstdio>
#define N 110000
struct node1{
int x,y,z;
};
struct node2{
bool f;int father;
};
node1 data[N];
node2 a[N];
int aa,n,k,h[N];
int gf(int x){
if (a[x].father==x) return x;
a[x].father=gf(a[x].father);
return (a[x].father);
}
void qsort(int l,int r){
int i=l,j=r,mid=(data[(l+r)/2].z);
node1 t;
while (i<=j){
while (data[i].z>mid)++i;
while (data[j].z<mid)--j;
if (i<=j){
t=data[i];data[i]=data[j];data[j]=t;
++i;--j;
}
}
if (l<j) qsort(l,j);
if (i<r) qsort(i,r);
}
int main(){
freopen("attack.in","r",stdin );
freopen("attack.out","w",stdout);
int num=0;
scanf("%d%d",&n,&k);
for (int i=0;i<n;++i){
a[i].father=i;
a[i].f=true;
}
for (int i=1;i<=k;++i) {
scanf("%d",&aa);
a[aa].f=false;
}
for (int i=1;i<n;++i){
int a1,a2,a3;
scanf("%d%d%d",&a1,&a2,&a3);
data[++num].x=a1;
data[num].y=a2;
data[num].z=a3;
}
qsort(1,n-1);
long long ans=0;
for (int i=1;i<n;++i){
int x=data[i].x,y=data[i].y;
int fa=gf(x),fb=gf(y);
if ((a[fa].f==a[fb].f)&&(a[fa].f==true)&&fa!=fb) {
a[fa].father=a[fb].father;
continue;
}
if (a[fa].f!=a[fb].f){
a[fa].father=a[fb].father;
a[fb].f=false;
continue;
}
if ((a[fa].f==a[fb].f)&&(a[fa].f==false)){
ans+=data[i].z;
}
}
printf("%lld",ans);
//for (int i=1;i<n;++i) printf("%d ",data[i].z);
return 0;
}