网络I/O模型知识总结

在实际应用中,数据操作通常分为输入和输出,那么以输入为例,在操作系统中,一个数据的输入通常分为以下两个过程:

  1. 等待数据准备好.
  2. 将准备好的数据从内核拷贝到用户空间

     下面我们将会分别讨论 I/O 模型中的两个大类,即 同步 I/O 与 异步 I/O。

      图 1. 基本I/O 模型的简单矩阵

同步阻塞I/O


     最常用的一个模型是同步阻塞 I/O 模型,即在读写数据过程中会发生阻塞现象
     其行为非常容易理解,其用法对于典型的应用程序来说都非常有效。在调用 read 系统调用时,应用程序会阻塞并对内核进行上下文切换。然后会触发读操作,当响应返回时(从我们正在从中读取的设备中返回),数据就被移动到用户空间的缓冲区中。然后应用程序就会解除阻塞(read 调用返回)。
       图 2. 同步阻塞 I/O 模型
     当用户线程发出IO请求之后,内核会去查看数据是否就绪,如果没有就绪就会等待数据就绪,而用户线程就会处于阻塞状态,用户线程交出CPU。当数据就绪之后,内核会将数据拷贝到用户线程,并返回结果给用户线程,用户线程才解除block状态
例如:
data = socket.read();
如果数据没有就绪,就会一直阻塞在read方法。

同步非阻塞 I/O


     同步阻塞 I/O 的一种效率稍低的变种是同步非阻塞 I/O。在这种模型中,设备是以非阻塞的形式打开的。这意味着 I/O 操作不会立即完成,read操作可能会返回一个错误代码,说明这个命令不能立即满足(EAGAIN 或 EWOULDBLOCK
  图 3. 同步非阻塞 I/O 模型
     当用户线程发起一个read操作后,并不需要等待,而是马上就得到了一个结果。如果结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦内核中的数据准备好了,并且又再次收到了用户线程的请求,那么它马上就将数据拷贝到了用户线程,然后返回。
     所以事实上,在非阻塞IO模型中,用户线程需要不断地询问内核数据是否就绪,也就说非阻塞IO不会交出CPU,而会一直占用CPU。
例如:
while(true){
    data = socket.read();
    if(data!= error){
        处理数据
        break;
    }
}
    当一个应用进程像这样对一个非阻塞描述符循环调用recvfrom时,我们称之为轮询(polling)。应用进程只需轮询内核,以查看某个操作是否就绪。这么做往往耗费大量CPU时间。对于非阻塞IO就有一个非常严重的问题,在while循环中需要不断地去询问内核数据是否就绪,这样会导致CPU占用率非常高,因此一般情况下很少使用while循环这种方式来读取数据。

多路复用I/O模型


     多路复用IO模型是目前使用得比较多的模型。Java NIO实际上就是多路复用IO。
      I/O 复用有时又被称为 事件驱动 I/O, 它的最大优势在于,我们可以将感兴趣的多个I/O事件(更精确的说,应该是 I/O 所对应的文件描述符)注册到 select/poll/epoll/kqueue 之中某一个系统调用上(很多时候,这些系统调用又被称为多路复用器。假设此时我们选择了 select() )。此后,调用进程会阻塞在 select() 系统调用之上(而不是阻塞在真正的 I/O 系统调用(如 read(), write() 等)上)。select() 会负责监视所有已注册的 I/O 事件,一旦有任意一个事件的数据准备好,那么 select() 会立即返回,此时我们的用户进程便能够进行数据的复制操作。
     在多路复用IO模型中,会有一个线程不断去轮询多个socket的状态,只有当socket真正有读写事件时,才真正调用实际的IO读写操作。因为在多路复用IO模型中,只需要使用一个线程就可以管理多个socket,系统不需要建立新的进程或者线程,也不必维护这些线程和进程,并且只有在真正有socket读写事件进行时,才会使用IO资源,所以它大大减少了资源占用。

  在Java NIO中,是通过selector.select()去查询每个通道是否有到达事件,如果没有事件,则一直阻塞在那里,因此这种方式会导致用户线程的阻塞。

  也许有朋友会说,我可以采用 多线程+ 阻塞IO 达到类似的效果,但是由于在多线程 + 阻塞IO 中,每个socket对应一个线程,这样会造成很大的资源占用,并且尤其是对于长连接来说,线程的资源一直不会释放,如果后面陆续有很多连接的话,就会造成性能上的瓶颈。

  而多路复用IO模式,通过一个线程就可以管理多个socket,只有当socket真正有读写事件发生才会占用资源来进行实际的读写操作。因此,多路复用IO比较适合连接数比较多的情况。

  另外多路复用IO为何比非阻塞IO模型的效率高是因为在非阻塞IO中,不断地询问socket状态时通过用户线程去进行的,而在多路复用IO中,轮询每个socket状态是内核在进行的,这个效率要比用户线程要高的多。

  不过要注意的是,多路复用IO模型是通过轮询的方式来检测是否有事件到达,并且对到达的事件逐一进行响应。因此对于多路复用IO模型来说,一旦事件响应体很大,那么就会导致后续的事件迟迟得不到处理,并且会影响新的事件轮询。
        图 4.  I/O复用模型

信号驱动式I/O模型

     在这种模型下,我们首先开启套接字的信号驱动式I/O功能,并通过sigaction系统调用安装一个信号处理函数。改系统调用将立即返回,我们的进程继续工作,也就是说他没有被阻塞。当数据报准备好读取时,内核就为该进程产生一个SIGIO信号。我们随后就可以在信号处理函数中调用read读取数据报,并通知主循环数据已经准备好待处理,也可以立即通知主循环,让它读取数据报。
  图 5. 信号驱动I/O模型
     当用户线程发起一个IO请求操作,会给对应的socket注册一个信号函数,然后用户线程会继续执行,当内核数据就绪时会发送一个信号给用户线程,用户线程接收到信号之后,便在信号函数中调用IO读写操作来进行实际的IO请求操作。
     无论如何处理SIGIO信号,这种模型的优势在于等待数据报到达期间进程不被阻塞。主循环可以继续执行,只要等到来自信号处理函数的通知:既可以是数据已准备好被处理,也可以是数据报已准备好被读取。

异步非阻塞 I/O


     异步IO模型才是最理想的IO模型,在异步IO模型中,当用户线程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从内核的角度,当它受到一个asynchronous read之后,它会立刻返回,说明read请求已经成功发起了,因此不会对用户线程产生任何block。然后,内核会等待数据准备完成,然后将数据拷贝到用户线程,当这一切都完成之后,内核会给用户线程发送一个信号,告诉它read操作完成了。也就说用户线程完全不需要实际的整个IO操作是如何进行的,只需要先发起一个请求,当接收内核返回的成功信号时表示IO操作已经完成,可以直接去使用数据了。
     也就说在异步IO模型中,IO操作的两个阶段都不会阻塞用户线程,这两个阶段都是由内核自动完成,然后发送一个信号告知用户线程操作已完成。用户线程中不需要再次调用IO函数进行具体的读写。这点是和信号驱动模型有所不同的,在信号驱动模型中,当用户线程接收到信号表示数据已经就绪,然后需要用户线程调用IO函数进行实际的读写操作;而在异步IO模型中,收到信号表示IO操作已经完成,不需要再在用户线程中调用iO函数进行实际的读写操作。
  注意,异步IO是需要操作系统的底层支持,在Java 7中,提供了Asynchronous IO。
      图 6. 异步非阻塞I/O模型

两种高性能IO设计模式

在传统的网络服务设计模式中,有两种比较经典的模式:

一种是 多线程,一种是线程池。
对于多线程模式,也就说来了client,服务器就会新建一个线程来处理该client的读写事件,如下图所示:
     这种模式虽然处理起来简单方便,但是由于服务器为每个client的连接都采用一个线程去处理,使得资源占用非常大。因此,当连接数量达到上限时,再有用户请求连接,直接会导致资源瓶颈,严重的可能会直接导致服务器崩溃。

  因此,为了解决这种一个线程对应一个客户端模式带来的问题,提出了采用线程池的方式,也就说创建一个固定大小的线程池,来一个客户端,就从线程池取一个空闲线程来处理,当客户端处理完读写操作之后,就交出对线程的占用。因此这样就避免为每一个客户端都要创建线程带来的资源浪费,使得线程可以重用。

  但是线程池也有它的弊端,如果连接大多是长连接,因此可能会导致在一段时间内,线程池中的线程都被占用,那么当再有用户请求连接时,由于没有可用的空闲线程来处理,就会导致客户端连接失败,从而影响用户体验。因此,线程池比较适合大量的短连接应用。

  因此便出现了下面的两种高性能IO设计模式:Reactor和Proactor。

     在Reactor模式中,会先对每个client注册感兴趣的事件,然后有一个线程专门去轮询每个client是否有事件发生,当有事件发生时,便顺序处理每个事件,当所有事件处理完之后,便再转去继续轮询,如下图所示:
     从这里可以看出,上面的五种IO模型中的多路复用IO就是采用Reactor模式。注意,上面的图中展示的 是顺序处理每个事件,当然为了提高事件处理速度,可以通过多线程或者线程池的方式来处理事件。
    
     在Proactor模式中,当检测到有事件发生时,会新起一个异步操作,然后交由内核线程去处理,当内核线程完成IO操作之后,发送一个通知告知操作已完成,可以得知,异步IO模型采用的就是Proactor模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值