C++实现 快速傅里叶变换(FFT)算法

本文详细介绍了如何使用C++实现快速傅里叶变换(FFT)算法,包括数据处理和逆变换的过程。通过Danielson-Lanczos引理进行复数序列的变换,适用于信号处理和数值计算等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

C++实现 快速傅里叶变换(FFT)算法


#include
#define DOUBLE_PI 6.283185307179586476925286766559

// 快速傅里叶变换
// data 长度为 (2 * 2^n), data 的偶位为实数部分, data 的奇位为虚数部分
// isInverse表示是否为逆变换
void FFT(double * data, int n, bool isInverse = false)
{
	int mmax, m, j, step, i;
	double temp;
	double theta, sin_htheta, sin_theta, pwr, wr, wi, tempr, tempi;
	n = 2 * (1 << n);
	int nn = n >> 1;
	// 长度为1的傅里叶变换, 位置交换过程
	j = 1;
	for(i = 1; i < n; i += 2)
	{
		if(j > i)
		{
			temp = data[j - 1];
			data[j - 1] = data[i - 1];
			data[i - 1] = temp;
			data[j] = temp;
			data[j] = data[i];
			data[i] = temp;
		}
	// 相反的二进制加法
		m = nn;
		while(m >= 2 && j > m)
		{
			j -= m;
			m >>= 1;
		}
			j += m;
	}
	// Danielson - Lanczos 引理应用
	mmax = 2;
	while(n > mmax)
	{
		step = mmax << 1;
		theta = DOUBLE_PI / mmax;
		if(isInverse)
		{
		theta = -theta;
		}
		sin_htheta = sin(0.5 * theta);
		sin_theta = sin(theta);
		pwr = -2.0 * sin_htheta * sin_htheta;
		wr = 1.0;
		wi = 0.0;
	for(m = 1; m < mmax; m += 2)
	{
		for(i = m; i <= n; i += step)
		{
		j = i + mmax;
		tempr = wr * data[j - 1] - wi * data[j];
		tempi = wr * data[j] + wi * data[j - 1];
		data[j - 1] = data[i - 1] - tempr;
		data[j] = data[i] - tempi;
		data[i - 1] += tempr;
		data[i] += tempi;
		}
		sin_htheta = wr;
		wr = sin_htheta * pwr - wi * sin_theta + wr;
		wi = wi * pwr + sin_htheta * sin_theta + wi;
	}
	mmax = step;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

smartisong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值