朴素贝叶斯
一种基于贝叶斯定理的快速且简单的概率分类器,假设特征之间相互独立。
输入
• 数据:输入数据集
● 预处理器:预处理方法
输出
● 学习器:朴素贝叶斯学习算法
• 模型:训练好的模型
朴素贝叶斯从数据中学习一个朴素贝叶斯模型,仅适用于分类任务。
该小部件有两个选项:用于在其他小部件中显示的名称,以及生成报告。默认名称为"朴素贝叶斯"。修改名称后需点击"应用"生效。
预处理
若未提供其他预处理器,朴素贝叶斯将使用默认预处理流程,按以下顺序执行:
• 移除空列
• 将数值型数据等频离散化为4个分箱
如需禁用默认预处理,可将空的预处理器小部件连接到学习器。
示例
以下是两个使用该小部件的案例:
案例一:将朴素贝叶斯与随机森林模型进行对比。
- 将文件中的鸢尾