Orange3实战教程:模型---评分卡模型

评分卡模型

一种可解释预测的分类模型。

输入

● 数据:用于训练模型的数据集
● 预处理器:预处理方法

输出

● 学习器:评分卡(fasterrisk)学习算法
● 模型:训练完成的评分卡模型

评分卡部件 提供了一种机器学习模型,可通过 评分卡查看器部件 轻松解释。该部件的核心是 fasterrisk 算法,更多信息可参考相关论文。

评分卡部件包含四个可调参数,以满足不同需求:

  • 特征选择后的属性数量:此部件要求所有特征均为二值化形式,因此预处理流程会将连续特征离散化,并对分类特征进行独热编码。此参数通过筛选最佳特征来控制(减少)生成的特征数量,从而加速训练过程。

  • 决策参数的最大数量:限制模型中的决策参数数量,平衡复杂性与可解释性。参数越多可能提高准确性,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值