评分卡模型
一种可解释预测的分类模型。
输入
● 数据:用于训练模型的数据集
● 预处理器:预处理方法
输出
● 学习器:评分卡(fasterrisk)学习算法
● 模型:训练完成的评分卡模型
评分卡部件 提供了一种机器学习模型,可通过 评分卡查看器部件 轻松解释。该部件的核心是 fasterrisk 算法,更多信息可参考相关论文。
评分卡部件包含四个可调参数,以满足不同需求:
-
特征选择后的属性数量:此部件要求所有特征均为二值化形式,因此预处理流程会将连续特征离散化,并对分类特征进行独热编码。此参数通过筛选最佳特征来控制(减少)生成的特征数量,从而加速训练过程。
-
决策参数的最大数量:限制模型中的决策参数数量,平衡复杂性与可解释性。参数越多可能提高准确性,