Orange3实战教程:评估---测试与评分

测试与评分

对学习算法在数据上进行测试。

输入

数据:输入数据集

  • 测试数据:独立的测试数据集
    学习器:学习算法(可多个)

输出

评估结果:分类算法测试的结果

该小部件用于测试学习算法,支持多种采样方案(包括使用独立测试数据)。主要功能包括:

  1. 展示包含不同分类器性能指标(如分类准确率、ROC曲线下面积等)的表格。
  2. 输出评估结果,供其他小部件(如ROC分析或混淆矩阵)进一步分析分类器性能。

学习器信号的特殊性:可连接至多个小部件,以便用相同流程测试多个学习器。

1. 支持的采样方法
  • 交叉验证:将数据分为若干折&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值