Orange3实战教程:无监督---密度聚类

密度聚类

使用 DBSCAN 密度聚类算法对数据进行分组。

输入

• 数据:输入数据集

输出

• 数据:带有聚类标签(作为元属性)的数据集

该部件应用 密度聚类算法处理数据,并输出一个带有聚类标签作为元属性的新数据集。部件还会显示按距离排序的 k 近邻图(k 值由“核心点邻居数”参数决定)。根据相关文献建议,此图可用于帮助用户选择理想的“邻域距离”参数值。作者建议,该参数应设置为图中第一个“谷底”对应的距离值。

  1. 参数设置
  • 核心点邻居数:一个点被视为核心点所需的最小邻居数量。
  • 邻域距离:两个样本之间的最大距离,超出此距离则不被视为同一邻域。
  1. 距离度量方式(欧氏距离、曼哈顿距离或余弦相似度)。若勾选“标准化特征”,数据将按列标准化(均值为0,标准差

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

err2008

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值