密度聚类
使用 DBSCAN 密度聚类算法对数据进行分组。
输入
• 数据:输入数据集
输出
• 数据:带有聚类标签(作为元属性)的数据集
该部件应用 密度聚类算法处理数据,并输出一个带有聚类标签作为元属性的新数据集。部件还会显示按距离排序的 k 近邻图(k 值由“核心点邻居数”参数决定)。根据相关文献建议,此图可用于帮助用户选择理想的“邻域距离”参数值。作者建议,该参数应设置为图中第一个“谷底”对应的距离值。
- 参数设置:
- 核心点邻居数:一个点被视为核心点所需的最小邻居数量。
- 邻域距离:两个样本之间的最大距离,超出此距离则不被视为同一邻域。
-
距离度量方式(欧氏距离、曼哈顿距离或余弦相似度)。若勾选“标准化特征”,数据将按列标准化(均值为0,标准差