嵌入式职场
在Matlab、Python、C/C++和Go等多种编程语言方面都有丰富的经验,专注于智能优化算法、工业人机交互界面设计、物联网、服务端开发等众多领域。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
调用smoothts函数对金融时间序列数据进行平滑处理
每个部分都会生成一个新的图形窗口,其中包含原始散点图、平滑后的曲线图以及相应的图例说明。用于对金融时间序列数据进行平滑处理并绘制平滑后的波形图。原创 2024-03-06 21:33:31 · 179 阅读 · 0 评论 -
调用smooth函数进行加噪数据的平滑处理
函数对加噪信号进行平滑处理,并比较了不同平滑方法的效果。通过比较不同方法的效果,可以选择最适合具体数据特征的平滑方法进行信号处理。使用MATLAB中的。原创 2024-03-05 22:49:12 · 273 阅读 · 0 评论 -
模拟一个基站和一个移动台之间的信号传播
同样使用时间序列和上述参数计算出反射径信号的信号强度。根据时间序列和上述参数,计算出直射径信号的信号强度。该信号被视为一个简单的正弦波信号,其频率是2Hz。:时间序列,从0.1秒开始,每隔0.0001秒采样一次,直到12秒。:设置坐标轴范围,横轴范围为0到12秒,纵轴范围为-0.5到0.5。:移动台移动的速度。:移动台距离基站的初始距离。:基站到反射墙的距离。假设基站到反射墙的距离为15米。:绘制直射径信号、反射径信号和合成信号的波形图。:添加标签,标注每条曲线对应的含义。表示反射径信号的颜色为绿色,原创 2023-10-22 17:54:40 · 189 阅读 · 0 评论 -
信噪比和误码率、误符号率之间关系的仿真实验
绘制误码率和误符号率随信噪比的变化曲线。添加图例(legend)来区分两个曲线,设置 x 轴标签为 '信噪比(dB)',y 轴标签为 '误符号率和误码率'。这段代码的作用是进行了一次信噪比和误码率、误符号率之间的仿真实验,并绘制了误码率和误符号率随信噪比变化的曲线。通过改变信噪比,可以观察到误码率和误符号率随信噪比的变化趋势,从而评估系统在不同信噪比条件下的性能表现。进行了一次信噪比和误码率、误符号率之间关系的仿真实验,并绘制了误码率(BER)和误符号率(SER)随信噪比的变化曲线。即 snr=-3:3。原创 2023-10-22 17:48:36 · 567 阅读 · 0 评论 -
模拟QPSK调制在AWGN信道下的性能
将二进制数据映射到星座图上的符号点时,使用Gray编码进行映射,保证相邻符号之间只有一个比特差异。QPSK是一种调制方式,共有4个符号点(星座点),对应二进制数据00、01、11、10。这里设置为100万个符号,用于模拟传输并计算误码率和误符号率。g. 对下采样信号进行QPSK解调,得到解调后的Gray编码数据。h. 根据Gray编码表进行解码,得到解调后的二进制数据。c. 将Gray编码后的数据进行QPSK调制,得到。d. 对调制后的信号进行矩形脉冲形成,得到。b. 将二进制数据进行Gray编码,得到。原创 2023-10-22 17:46:23 · 262 阅读 · 0 评论 -
计算信号功率和噪声功率、计算了噪声n的方差
生成具有指定均值(0)和标准差(sqrt(pn))的高斯白噪声n。使用randn函数生成符合标准正态分布(均值为0,方差为1)的随机数,并通过乘以sqrt(pn)来调整标准差。方差是衡量数据分布和离散程度的指标,这里用方差来表示加噪后信号的噪声水平。通过计算方差,可以评估加噪后信号的质量和噪声强度。首先,将SNR转换为线性比例,即将dB单位转换为无单位。然后,将信号功率px除以SNR的线性比例,得到噪声功率pn。计算x的范数(即向量的长度),然后将其平方除以x的长度(即样本数),得到信号x的功率。原创 2023-10-22 17:40:25 · 1135 阅读 · 0 评论 -
生成一个正弦信号并叠加高斯白噪声
代码的作用是生成一个正弦信号,并在该信号上添加指定信噪比的高斯白噪声,然后对比显示原始信号和叠加噪声后的信号,最后计算去除噪声后的信号的方差。:在上述的2行1列的子图中,选中第二个子图,并绘制叠加了高斯白噪声后的信号y,同时给子图添加标题"叠加了高斯白噪声后的正弦信号"。:在上述的2行1列的子图中,选中第二个子图,并绘制叠加了高斯白噪声后的信号y,同时给子图添加标题"叠加了高斯白噪声后的正弦信号"。:创建一个2行1列的子图,选中第一个子图,并在该子图中绘制正弦信号x,同时给子图添加标题"正弦信号x"。原创 2023-10-22 17:35:03 · 1060 阅读 · 0 评论 -
符号计算工具箱来计算和绘制函数及其傅里叶变换
通过subplot函数创建一个1行2列的图形窗口,并在第一个子图中使用ezplot函数绘制函数f的图像。使用fourier函数对函数f进行傅里叶变换,得到其复数形式的频域表示F。最后,在第二个子图中使用ezplot函数绘制傅里叶变换F的模值的图像。使用了MATLAB的符号计算工具箱来计算和绘制函数及其傅里叶变换。这段代码的目的是显示给定函数f及其傅里叶变换在时域和频域上的图像。然后,声明一个符号变量t,用来表示函数中的自变量。接下来,定义函数f为t乘以e的负绝对值t次幂。原创 2023-10-19 20:49:56 · 408 阅读 · 0 评论 -
一维离散信号的卷积运算
总结起来,这段代码通过卷积运算将输入信号 x 与卷积核 b 进行卷积,最后将原始信号、卷积核和卷积结果在图像上进行展示。进行一维离散信号的卷积运算,并将原始信号、卷积核和卷积结果进行图像展示。原创 2023-10-19 20:47:08 · 248 阅读 · 0 评论 -
【数字信号处理】基于matlab PM调制与解调
PM调制(Phase Modulation)是一种将信息信号与载波信号之间的相位差从而对频率进行变化的调制方式,可以实现高质量的语音和图像传输。为了测试PM调制的效果,我们可以在信号中添加加性高斯白噪声(AWGN)。最后,我们可以使用comm.PSKDemodulator对象对解调信号进行解调,得到原始的数字信号。接下来,我们可以生成一个随机的数字信号,并使用线性调制(BPSK或QPSK)对其进行调制。然后,我们可以使用comm.PhaseModulator对象对调制信号进行PM调制。原创 2023-06-20 22:05:29 · 920 阅读 · 0 评论 -
【音频和单音频】基于matlab AM音乐音频和单音频分复用
接着,我们采用 AM 调制对音乐信号进行调制,得到 AM 调制信号。同时,我们生成了三个单音频信号,并将其与 AM 调制信号进行分复用,得到一个多载波信号。最后,我们对多载波信号进行解复用和解调,得到原始的音乐信号和单音频信号。需要注意的是,这里我们采用 AM 调制对音乐信号进行调制,因此需要指定 AM 调制信号的带宽参数。同时,在进行分复用时,需要将单音频信号与 AM 调制信号合并,并使其在时间轴上对齐。在解复用时,则需要将多载波信号分离出单音频信号,并使用 AM 解调器对音乐信号进行解调。原创 2023-06-20 22:06:12 · 258 阅读 · 0 评论 -
生成一个长度为 101 的离散信号序列
总结起来,这段代码生成了一个长度为 101 的离散信号序列,并将其样本值在图像上展示出来。该信号采用 sinc 函数降采样和加权平均的方式生成,其波形类似于一组带通滤波器的频率响应。生成一个长度为 101 的离散信号序列,并作出其样本值的图像。原创 2023-10-19 20:53:33 · 120 阅读 · 0 评论 -
展示带包络信号的同相分量分析
展示了带包络信号的同相分量的时域和频域特性。其中包括低通信号同相分量 xl1 和 xl2 随时间的变化,以及它们的幅度谱随频率的变化。原创 2023-10-19 21:09:05 · 140 阅读 · 0 评论 -
【译码】基于matlab SC SCL BP SCAN和SSC译码
SCL(Successive Cancellation List)译码、BP(Belief Propagation)译码、SCAN(Soft-Cancellation Aided N-scan)译码和SSC(Sum-Product-Check)译码都是用于极化码译码的算法。SSC译码是一种基于加和-检验码的译码算法,通过对信息位和校验位进行加和,并与校验码进行比较来进行判决。通过上述代码实现,可以在MATLAB中进行SCL、BP、SCAN和SSC等极化码译码算法的实现和仿真,得到解码结果。原创 2023-06-20 22:05:26 · 525 阅读 · 0 评论 -
【DOA估计】基于matlab MUSIC和CAPON算法DOA估计
在以上代码中,我们假设使用一个 8 阵列接收具有两个源的信号,利用二元阵列的模型构造了接收信号模型,并加入噪声。对于每个搜索的角度,我们计算其与信号子空间的投影,最终得到了 DOA 估计结果。对于每个搜索的角度,我们计算其对应的空间谱权向量,并根据最小方差准则估计 DOA 值。MUSIC 算法基于信号子空间和噪声子空间的投影,在不知道信号总数的情况下,可以估计出接收信号的 DOA 值。最终,通过绘制两种算法的 DOA 估计结果,可以看到 CAPON 算法比 MUSIC 算法更加精确。原创 2023-06-20 22:03:25 · 460 阅读 · 0 评论 -
计算信号的自相关函数和功率谱密度
下半部分绘制功率谱密度S随频率f的变化图像,其中使用fftshift函数将频率转换为从负频率到正频率。需要注意的是,在计算过程中,使用了sinc函数、cos函数、fft函数和fftshift函数来进行信号的处理和离散Fourier变换。通过sinc函数生成信号的自相关函数R,其中sinc函数是钟形函数的正规化版本,并且乘以cos函数用于调制信号。首先,定义了时间间隔ts和时间序列tao,其中tao的范围为-1到1,间隔为ts。然后,根据采样频率fs和tao序列的长度,计算出频率间隔df和频率序列f。原创 2023-10-19 21:12:08 · 760 阅读 · 0 评论 -
【信号跟踪】基于matlab二阶锁相环辅助三阶锁频环加码环高动态GNSS信号跟踪
高动态的GNSS信号跟踪是一个复杂的问题,二阶锁相环辅助三阶锁频环加码环可以用于提高跟踪性能。得到二阶锁相环跟踪完毕的结果后,我们需要用三阶锁频环和加码环进一步对信号进行跟踪。首先,我们需要定义一些基本参数,如载波频率、符号周期、码片长度、采样周期等。接下来,我们可以使用仿真的方式生成收到的信号,并在其中加入噪声、多普勒效应和伪距偏移等干扰。接下来,我们可以生成一个本地序列,并将其映射为正交码。然后,我们可以生成一个信号模板,包括载波和码片。接下来,我们可以使用二阶锁相环来进行信号跟踪。原创 2023-06-20 22:00:41 · 715 阅读 · 0 评论 -
【数字调制】基于matlab加性高斯白噪声信道下数字调制识别分类
SVM 是一种二分类算法,因此在多类别情况下,我们需要进行多个二分类器的组合,例如采用 one-vs-all 或 one-vs-one 策略。另外,分类器的性能很大程度上取决于所选用的特征,因此需要在实际应用中根据具体情况进行调整。以上代码中,我们首先生成了随机二进制数据,并进行 QAM 调制。接着,我们在加性高斯白噪声信道下对调制信号加上噪声,并提取每个符号的实部、虚部、幅度和相位作为特征。然后,我们从样本中随机选择一部分作为训练集,训练一个 SVM 分类器。原创 2023-06-20 22:01:46 · 229 阅读 · 0 评论 -
离散时间信号进行加法运算和乘法运算
在第1个区域中,使用stem函数将x1的值在时间轴上绘制成离散点图,并添加标题"x1"。第2个区域和第3个区域的绘图方式与第1个区域类似,只是分别绘制了x2和x的离散点图。在第4个区域中,绘制了y的离散点图,并添加标题"y"。综上所述,这段代码主要用于展示MATLAB中关于离散时间信号的一些基本操作,包括加法、乘法以及绘制离散点图的方法。接着,将x1和x2对应位置上的值相乘,得到y = x1.*x2。定义了一个离散时间信号,并对其进行加法运算和乘法运算,最后绘制四个离散的子图。2. 信号加法与乘法运算。原创 2023-10-19 20:42:17 · 243 阅读 · 0 评论 -
【雷达杂波建模与仿真】基于matlab K分布雷达杂波建模与仿真
通过上述代码实现,可以在MATLAB中进行K分布雷达杂波建模与仿真,并得到K分布随机变量序列和K分布雷达杂波序列。实际应用中,还需要根据具体情况进行参数的调整和优化,以达到最佳的雷达性能和目标探测效果。K分布也称作Nakagami-k分布,是一种适用于雷达信号处理中的概率分布,其可用于描述复杂气象条件下的雷达回波信号特性。本文将介绍如何利用MATLAB进行K分布雷达杂波建模与仿真。原创 2023-06-20 22:00:28 · 571 阅读 · 0 评论 -
【信号频谱】基于matlab GPS信号频谱
在以上代码中,我们首先定义了 GPS L1 的载波频率 f0 和采样频率 fs,并使用余弦函数生成了 L1 的载波信号 carrier。在频域上,导航数据呈现出一定的规律性,可以通过分析不同卫星的导航数据,来实现对 GPS 信号的解调和跟踪。伪随机码:GPS 信号的伪随机码是一种长度为 1023 位的伪随机序列,用于区分不同卫星发射的信号。在频域上,伪随机码会呈现出类似于噪声的频谱,其带宽与码长有关。根据 GPS 的信号结构可知,GPS 信号是一种带有多普勒效应的调制信号,由载波、伪随机码、导航数据组成。原创 2023-06-20 21:56:04 · 1151 阅读 · 0 评论 -
【通信仿真】基于matlab DS-CDMA通信系统仿真
重复运行以上步骤多次,并统计错误比特数和误码率。在绘制误码率曲线时,我们可以将横轴设置为信噪比(SNR),纵轴设置为误码率(BER)。对于每个用户,使用其码片对接收信号进行解调,并使用BPSK解调器进行解调。然后将解调出的信息比特进行译码,恢复出原始信息比特序列。通过添加加性高斯白噪声(AWGN)模拟信道传输,并计算接收端各用户的信号功率。对于每个用户,随机生成一组码片序列,并将其映射为正交码。将信息比特序列使用用户码片进行扩频,生成多用户码片序列。随机生成一定长度的信息比特序列,并使用BPSK调制。原创 2023-06-20 21:57:26 · 309 阅读 · 0 评论 -
【通信仿真】基于matlab特征分解GFDM无ICI、ISI干扰和导频插入信道估计
需要注意的是,这里采用特征分解方法对信道进行均衡,可以有效地消除 ISI 和 ICI 干扰,但也需要在发送端加上循环前缀,以消除块间干扰。另外,为了减小导频插入对数据传输效率的影响,导频间隔需要适当选择,一般取 2 或 4 比较合适。以上代码中,我们首先生成了 GFDM 调制的符号序列,然后在瑞利衰落信道中进行传输。接着,我们在发送时隙内插入导频,并在接收端进行导频提取和插值,以进行信道估计和均衡。最后,我们对恢复的符号序列进行解调,计算误码率并展示结果。原创 2023-06-20 21:56:17 · 301 阅读 · 0 评论 -
生成一组离散信号通过差分方程(一阶递推关系)进行滤波处理
总结起来,这段代码生成了两个输入信号 x1 和 x2,然后通过一阶低通滤波器对这两个信号进行滤波处理,最后将原始信号和滤波结果在图像上进行展示。原创 2023-10-19 20:45:03 · 163 阅读 · 0 评论 -
【无线资源】基于matlab V2X车联网无线资源分配
V2X(车对车,车对基础设施通信)车联网是一种重要的智能交通系统,可实现车辆之间、车辆与基础设施之间的无线通信。在V2X车联网中,需要对无线资源进行分配,以保证通信质量和通信效率。下面介绍如何基于MATLAB实现V2X车联网无线资源分配。首先需要建立V2X车联网无线资源分配系统的数学模型。该模型可以表示为一个优化问题,其中目标函数是最大化系统的总吞吐量,约束条件是满足每个车辆的通信质量和避免频谱资源冲突。原创 2023-06-20 21:55:23 · 659 阅读 · 0 评论 -
绘制离散曲线图
接着,计算对应于每个t值的余弦函数值cos(2t),并将结果存储在向量x中。最后,使用stem函数将t和x绘制成离散点图,其中x的值用离散直线表示。具体来说,这段代码绘制了以时间为横轴,余弦函数值为纵轴的离散曲线图。表示生成一个时间范围在0到2π之间、步长为0.1的等差数列t。原创 2023-10-19 20:39:36 · 336 阅读 · 0 评论 -
【误码率仿真】基于matlab QPSK和16QAM可见光信道误码率仿真
以上代码中,我们首先生成了 QPSK 和 16QAM 调制信号,并将其传输到经过瑞利衰落和白噪声干扰的可见光信道中。然后,我们对接收到的信号进行解调,并统计误码率。最后,我们绘制了 QPSK 和 16QAM 的误码率比较曲线,以展示在可见光信道下不同调制方式的性能差异。原创 2023-06-20 21:51:02 · 274 阅读 · 0 评论 -
通过循环计算每个信号的自相关函数Ry和功率谱密度Sf
需要注意的是,在计算过程中,使用了randn函数、xcorr函数、fft和fftshift函数来生成随机信号、计算自相关函数和离散Fourier变换。接着,使用xcorr函数计算每个信号的自相关函数Ry,其中lags参数表示自相关函数的延迟范围为-50到50,"coeff"参数表示返回的自相关函数已经归一化。该代码实现了生成N2个长度为N1的随机信号x,并通过循环计算每个信号的自相关函数Ry和功率谱密度Sf。求取所有信号的自相关函数和功率谱密度的平均值,并分别赋值给Ry_av和Sf_av。原创 2023-10-19 21:14:57 · 220 阅读 · 0 评论 -
两种方法计算离散卷积的结果
接着,使用toeplitz函数构造输入序列h的Toeplitz矩阵H。需要注意的是,在计算过程中,使用了fft和ifft函数来进行离散Fourier变换和逆变换,以及.*运算符来进行逐点相乘。最后,使用ifft函数将频域表示的Y进行逆离散Fourier变换,得到时域的结果y1。然后,使用fft函数对序列h和x进行离散Fourier变换,得到频域表示的H和X。接下来,直接计算离散卷积结果y,通过将矩阵H与向量x相乘得到。利用频域表示的H和X,通过元素间的逐点相乘得到Y。首先,定义了两个输入序列h和x。原创 2023-10-19 21:03:08 · 335 阅读 · 0 评论 -
【误码率仿真】基于matlab BCH码误码率仿真
重复以上步骤多次,可以得到不同信噪比下的误码率。在绘制误码率曲线时,我们可以将横轴设置为信噪比(SNR),纵轴设置为误码率(BER)。例如,可以定义一个 (511, 493) BCH 码,纠错能力为 t=2,信息位数为 k=493。引入高斯白噪声(AWGN)模拟信道,并加上一定的信噪比(SNR)。首先定义编码参数,包括编码方式、码长、信息位数和纠错能力等。使用BCH解码器对添加噪声后的码字进行解码,并计算误码率。随机生成一定长度的信息序列,并将其编码为BCH码。原创 2023-06-20 21:50:10 · 259 阅读 · 0 评论 -
【误码率仿真】基于matlab 小波变换OFDM误码率仿真
其中,与传统的 OFDM 相比,小波变换 OFDM 在进行调制和解调时,使用的是小波变换函数。需要注意的是,由于小波变换函数将频域信号转换为时域信号,因此与传统 OFDM 不同,小波变换 OFDM 中的信号需要在时域上添加循环前缀。与传统的 OFDM 不同,小波变换 OFDM 使用小波函数作为基函数,而非正弦函数作为基函数,因此可以在保持子载波正交性的同时,让子载波之间的带宽变得更加均匀。在频域进行信号加权,然后进行小波逆变换,得到时域信号。在接收端进行信号接收,去掉循环前缀并进行小波变换得到频域信号。原创 2023-06-20 21:51:08 · 420 阅读 · 0 评论 -
【通信仿真】基于matlab IFFT OFDM误码率仿真
OFDM (Orthogonal Frequency Division Multiplexing) 是一种高效的调制技术,其基本原理是将整个信道分成多个子信道,在每个子信道中进行数据传输,从而提高频谱利用率。实现 OFDM 可以使用 IFFT 和 FFT。其中,IFFT (Inverse Fast Fourier Transform) 是将频域信号转换为时域信号的技术,而 FFT (Fast Fourier Transform) 是将时域信号转换为频域信号的技术。原创 2023-06-21 02:00:00 · 461 阅读 · 0 评论 -
【雷达杂波建模与仿真】基于matlab K分布雷达杂波建模与仿真
通过上述代码实现,可以在MATLAB中进行K分布雷达杂波建模与仿真,并得到K分布随机变量序列和K分布雷达杂波序列。实际应用中,还需要根据具体情况进行参数的调整和优化,以达到最佳的雷达性能和目标探测效果。K分布也称作Nakagami-k分布,是一种适用于雷达信号处理中的概率分布,其可用于描述复杂气象条件下的雷达回波信号特性。本文将介绍如何利用MATLAB进行K分布雷达杂波建模与仿真。原创 2023-06-20 21:59:06 · 1391 阅读 · 0 评论 -
【通信仿真】基于matlab IFFT OFDM误码率仿真
OFDM (Orthogonal Frequency Division Multiplexing) 是一种高效的调制技术,其基本原理是将整个信道分成多个子信道,在每个子信道中进行数据传输,从而提高频谱利用率。实现 OFDM 可以使用 IFFT 和 FFT。其中,IFFT (Inverse Fast Fourier Transform) 是将频域信号转换为时域信号的技术,而 FFT (Fast Fourier Transform) 是将时域信号转换为频域信号的技术。原创 2023-06-20 21:48:27 · 242 阅读 · 0 评论 -
计算随机信号的自相关函数和功率谱密度
在每次循环中,使用xcorr函数计算当前随机信号x(ii,:)的自相关函数Rx(ii,:),并指定最大延迟为50和归一化选项为"coeff"。接下来,使用subplot函数创建一个2行1列的图形窗口,并在每个子图中使用plot函数绘制相应的图像。使用fft函数对Rx(ii,:)进行傅里叶变换,并取其绝对值,得到频谱Sf(ii,:)。使用for循环遍历每个随机信号,对每个信号计算自相关函数Rx和相应的频谱Sf。这段代码的目的是计算随机信号的自相关函数和功率谱密度,并展示了每个子图的图像。给每个子图添加标题。原创 2023-10-19 21:10:25 · 388 阅读 · 0 评论 -
【通信仿真】基于matlab esprit算法宽带信号(线性调频信号)DOA估计
假设有4个信源,中心频率为f0,带宽为B,发射时刻为t0,到达传感器的时刻为ti,其中i为所在传感器编号。生成线性调频信号时,需要确定信号的起始频率和终止频率。将4个传感器排成直线阵列,进行阵列测量。通过阵列测量得到每个传感器上接收到的信号,并保存到一个矩阵中。将接收到的信号进行去除直流分量、归一化处理,并使得所有信号的幅值相等。将处理后的信号保存到一个矩阵中。首先,将处理后的信号矩阵分别进行傅里叶变换,得到频域信号矩阵。然后,将频域信号矩阵进行合并,得到一个大矩阵。原创 2023-06-20 21:47:31 · 616 阅读 · 0 评论 -
【通信仿真】基于matlab music算法宽带信号(线性调频信号)DOA估计
对于基于 MATLAB 的 MUSIC 算法宽带信号(线性调频信号)DOA 估计,可以按照以下步骤进行:构造宽带信号:构造多个具有不同频率的正弦波,来形成宽带信号。模拟阵列:模拟一个具有 N 个传感器的阵列,并将每个传感器接收到的宽带信号进行采样。参数设置:根据实际情况设置与 DOA 估计相关的参数,如信噪比、角度搜索范围、角度分辨率等。计算协方差矩阵:将采样到的宽带信号在时间和空间上进行协方差运算,得到协方差矩阵 R。计算特征值分解:通过对协方差矩阵进行特征值分解,得到其特征值和特征向量。原创 2023-06-20 21:44:34 · 848 阅读 · 0 评论 -
【通信仿真】基于matlab OFDM仿真设计(卷积编码、自动增益控制、极大似然判决、QPSK收发、帧检测)
OFDM(正交频分复用)是一种多载波调制技术,其原理是将一组高速数据按照不同的频域进行分割,并将每个子信道进行正交调制,从而提高频谱利用率和抗多径干扰能力。在OFDM系统中,需要使用卷积编码、自动增益控制、极大似然判决、QPSK收发、帧检测等功能来实现信号的可靠传输。OFDM信号生成主要分为两步,第一步是将原始数据进行QPSK调制,即将数字信号转换为模拟信号,然后通过IFFT变换将模拟信号转换为时域信号;第二步是将时域信号添加循环前缀保证符合OFDM调制原理,使相邻信号之间正交。原创 2023-06-20 21:44:55 · 430 阅读 · 0 评论 -
离散时间信号的卷积特性
接下来,使用subplot函数创建一个3行1列的图形窗口,并在每个子图中使用plot函数绘制相应的频域信号的模值随频率w的变化的图像。使用矩阵运算将Yjw、dw、exp(j*pi)、w和n1的每个元素进行乘积,并进行相应的除法运算,得到输出序列y。同样地,使用矩阵运算将x和n的每个元素与w进行乘积,得到Xjw代表x在频率轴上的傅里叶变换。通过使用矩阵运算将h和n的每个元素与w进行乘积,得到Hjw代表h在频率轴上的傅里叶变换。然后,定义n为0到30之间的整数,表示离散时间序列h和x的取样点。原创 2023-10-19 20:59:00 · 209 阅读 · 0 评论 -
【滤波器设计】基于matlab数字滤波器和均衡器设计
数字滤波器是一种对数字信号进行处理的算法,其作用是滤除信号中不需要的频率分量、滤波器可以实现低通、高通、带通、带阻等不同的滤波类型。数字滤波器可以分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器两种类型。FIR数字滤波器是一种线性时不变系统,其特点是具有有限长的单位脉冲响应,即在滤波器的输出响应中,只有有限个时间点的响应值是非零的,其他时间点的响应值均为零。FIR数字滤波器有简单、稳定、易于设计和实现的优点,常用于实时信号处理。原创 2023-06-20 21:39:18 · 393 阅读 · 0 评论