善于利用形式化推理来发现一些新的东西。
然后我们从结论得到更有意思的理论。
不等式简单推理
0<a<b , b-a表示了 a和b之间的距离,也就是 a如果通过b-a可以到达b
因此 a+1*(b-a) = b ; 也就是a 递增 b-a的距离到达 点 b ,
可以推出 如果 递增的幅度小于 b-a 那么 肯定不能到达b
所以 我们有第一个推理 区间[0,1]的数δ ,a+δ*(b-a) < b, 但是这样写仍然麻烦不够通俗,要额外解释δ的取值区间
我们给δ换下马甲,既然是区间[0,1]之内的数,那么用形式化推理得到下面的东东
整数 p>0 , q >0 那么
可以得到
这样写是不是逼格满满了。一眨眼看这个东西,你半天是没反应过来的。
如果我们使用形式化推理逆向理解,是不是同样可以简化我们理解 。
而我们往往需要的就是这种逆向的化简能力。不要被外面高大上的马甲给欺骗了。
推导结果展开
从另外一个角度看, 定义了一个有理数
那么 针对数轴上的 两个 有理数 a , b 来说, 他们之间存在了 数不清的有理数。
因为这样的满足这样定义的p,q是有好多的。
未完.....