数学二次认知:No2 形式化推理以及结果思索

本文探讨了如何运用形式化推理从已知不等式出发,推导出一系列有趣的数学结论。通过对基本不等式的逐步推演,揭示了a与b之间有理数的存在性和分布特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

善于利用形式化推理来发现一些新的东西。

然后我们从结论得到更有意思的理论。

不等式简单推理

0<a<b , b-a表示了  a和b之间的距离,也就是  a如果通过b-a可以到达b

因此  a+1*(b-a) = b ; 也就是a 递增  b-a的距离到达  点  b , 

可以推出  如果 递增的幅度小于  b-a 那么  肯定不能到达b

所以   我们有第一个推理    区间[0,1]的数δ    ,a+δ*(b-a) < b,  但是这样写仍然麻烦不够通俗,要额外解释δ的取值区间

我们给δ换下马甲,既然是区间[0,1]之内的数,那么用形式化推理得到下面的东东

整数 p>0 , q >0  那么    

    可以得到   

这样写是不是逼格满满了。一眨眼看这个东西,你半天是没反应过来的。

如果我们使用形式化推理逆向理解,是不是同样可以简化我们理解 。

而我们往往需要的就是这种逆向的化简能力。不要被外面高大上的马甲给欺骗了。


推导结果展开

从另外一个角度看,    定义了一个有理数

那么 针对数轴上的  两个 有理数  a , b 来说, 他们之间存在了 数不清的有理数。

因为这样的满足这样定义的p,q是有好多的。


未完.....


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值