【pta】汉诺塔的非递归实现

该博客介绍了一种使用堆栈和循环而非递归方法解决汉诺塔问题的方案。通过输入正整数N表示盘子数量,遵循特定规律进行移动,最终将所有盘子从起始柱移动到目标柱。此方法需考虑奇偶数情况以确定圆盘的正确位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

借助堆栈以非递归(循环)方式求解汉诺塔的问题(n, a, b, c),即将N个盘子从起始柱(标记为“a”)通过借助柱(标记为“b”)移动到目标柱(标记为“c”),并保证每个移动符合汉诺塔问题的要求。

输入格式:

输入为一个正整数N,即起始柱上的盘数。

输出格式:

每个操作(移动)占一行,按柱1 -> 柱2的格式输出。

输入样例:

3

输出样例:

a -> c
a -> b
c -> b
a -> c
b -> a
b -> c
a -> c

其实一开始我也没想出来…后来是在网上看到大家说有位学者总结了一个规律:
1、将最小圆盘(1)移到下一个圆柱上。
2、比较另外两个圆柱(最小圆盘除外)最顶上的元素,如果有空柱的话将圆盘套到空柱上。如果没有空柱就讲小圆盘套到大圆盘上。(这是用我自己的话说的,我也不知道讲清楚没有 (:з」∠)
有一个注意事项就是,奇数和偶数按照这个规律最后所处的柱子会不一样,所以需要另外判断。

#include <stdio.h>
#define MAXSIZE 1000

typedef struct{
   
	int data[MAXSIZE];
	int top = -1;
}SqStack;

SqStack s[3];//对应三个圆柱
char name[3] = {
   'a','b','c'};

int push(SqStack *s, int n)//入栈操作
{
   
	if(s->top == MAXSIZE-1)
		return false;
	s->data[++<
### PTA汉诺塔游戏的实现与解题思路 #### 1. 经典汉诺塔问题回顾 经典汉诺塔问题是递归算法中的典型例子,其核心在于利用辅助柱将盘子从源柱移动到目标柱。传统方法的时间复杂度为 \(O(2^N)\),其中 \(N\) 是盘子的数量[^4]。 #### 2. 增加第四根柱子的影响 在引入第四根柱子的情况下,传统的递归公式不再适用。此时可以采用 Frame-Stewart 算法优化移动次数。假设四根柱子分别为 A、B、C 和 D,则可以通过以下策略减少总步数: - 将顶部 \(k\) 个盘子从 A 移动到 B 或 C(使用其他两根柱子作为辅助)。 - 将剩余的 \(N-k\) 个大盘子从 A 到达最终的目标柱(例如 C)。 - 再将之前暂存于 B 的 \(k\) 个盘子移至目标柱 C。 这种分治思想能够显著降低所需的移动次数。 #### 3. 动态规划求解最小步数 对于给定数量的盘子 N,寻找最优 k 值使得整体操作最高效是一个动态规划问题。定义状态转移方程如下: \[ dp[N] = \min_{0\leq k<N}(\text{move}(k)+dp[N-k]) \] 其中 `move(k)` 表示将前 k 层转移到临时杆所需的动作数目;而 $dp[N]$ 存储的是达到 n 层的最佳动作总数。此过程需遍历所有可能分割点以找到全局最低成本方案。 #### 4. 非递归实现方式探讨 除了上述基于递归或者动态规划的方法外,还可以考虑非递归版本来解决汉诺塔问题。通过显式维护一个栈结构模拟函数调用流程即可转换成迭代形式处理每一个具体步骤[^3]。 ```c #include <stdio.h> #include <stdlib.h> typedef struct StackNode { int disk; char from_rod, to_rod, aux_rod; struct StackNode* next; }StackNode; // Push operation on stack void push(StackNode** top_ref, int dsk, char fr, char t, char au){ StackNode *new_node=(StackNode*)malloc(sizeof(StackNode)); new_node->disk=dsk; new_node->from_rod=fr; new_node->to_rod=t; new_node->aux_rod=au; new_node->next=*top_ref; *top_ref=new_node; } // Pop operation from stack void pop(StackNode **top_ref,char *f,char *t,char *a,int *d){ StackNode *temp=*top_ref; *f=temp->from_rod; *t=temp->to_rod; *a=temp->aux_rod; *d=temp->disk; (*top_ref)=(*top_ref)->next; free(temp); } int main(){ int n,i,disk_number; printf("Enter number of disks:"); scanf("%d",&n); StackNode *stack=NULL; // Initial call equivalent pushed onto the stack. push(&stack,n,'A','C','B'); while(stack!=NULL){ char f,t,a; int d; pop(&stack,&f,&t,&a,&d); if(d==1){ printf("\nMove Disk %d From Rod %c To Rod %c",d,f,t); } else{ push(&stack,d-1,a,t,f); push(&stack,1,f,t,a); push(&stack,d-1,f,a,t); } } return 0;} ``` 以上代码片段展示了如何不依赖直接嵌套函数调用来完成相同功能的同时保持清晰逻辑链条可见性良好易于理解便于调试修改扩展性强等特点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值