最长上升子序列 O(n*n) & O(n*log(n))

本文介绍了两种不同的算法实现方式来求解最长递增子序列问题。第一种为朴素的动态规划方法,时间复杂度为O(n^2),第二种利用了二分查找优化后的动态规划方法,将时间复杂度降低到了O(n*log(n))。通过具体代码示例展示了如何高效地解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

练习题目:https://www.nowcoder.com/questionTerminal/d83721575bd4418eae76c916483493de

code O(n^2):

#include <cstdio>
#include <algorithm>
#define MAXN 1010
using namespace std;
int a[MAXN] , dp[MAXN];
int n,ans;
int main()
{
    while(~scanf("%d",&n)){
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        dp[0]=1;
        for(int i=1;i<n;i++){
            dp[i]=1;
            for(int j=0;j<i;j++){
                if(a[j]<a[i]) dp[i]=max(dp[i],dp[j]+1);
            }
        }

        for(int i=ans=0;i<n;i++) ans=max(ans,dp[i]);
        printf("%d\n",ans);
    }
    return 0;
}

code O(n*log(n)):

#include <cstdio>
#include <cstring>
#include <algorithm>
#define MAXN 1010
using namespace std;
int a[MAXN],c[MAXN];
int n,len=0;
//折半查找
int binary_search(int x)
{
    int l=1,r=len,mid;
    while(l<=r)
    {
        mid=(l+r)>>1;
        if(x>c[mid])l=mid+1;
        else
            r=mid-1;
    }
    return l;
}
int main()
{
    while(~scanf("%d",&n)){
        for(int i=0;i<n;i++) scanf("%d",&a[i]);
        len = 0;
        for(int i=0;i<n;i++){
            int k = binary_search(a[i]);
            c[k]=a[i];
            len = max(len,k);
        }
        printf("%d\n",len);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值