2019牛客暑期多校训练营(第一场)E.ABBA(带限制条件的非降路径)

本文探讨了一类特殊的组合数学问题,即寻找特定长度字符串的总数,这些字符串可以被拆分为给定数量的ABABAB和BABABA子序列。通过将问题转化为在网格中寻找路径的计数问题,给出了具体的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意

输入nnnmmm,问有多少种长度为2(n+m)2(n+m)2(n+m)的串可以拆成nnnABABAB子序列和mmmBABABA子序列

思路

对于某一个串,最终的条件是让其达到有n+mn+mn+mAAAn+mn+mn+mBBB,那么我们可以认为是一步一步的去给这个串添加上AAA或者BBB,直到有n+mn+mn+mAAAn+mn+mn+mBBB,然后就可以转化为在网格中选取路径选BBB表示向上,选AAA表示向右,即从(0,0)(0,0)(0,0)点达到(n+m,n+m)(n+m,n+m)(n+m,n+m)点有多少方案数。
例如BABABABABABABABABA
在这里插入图片描述
但是这道题的串并不是任意的串,他需要使原串能拆成nnnABABAB子序列,和mmmBABABA子序列。对于这样的串我们要让他满足什么条件呢。对于已经构造出nnnABABAB的串来说,接下来要怎么填AAABBB呢,考虑AAA的数量都是从哪里来的呢,首先AAA是从ABABAB中的AAA所来的,那么就有nnnAAA是从ABABAB中来的,在考虑另一部分。为了满足题意的构造另一部分的AAA肯定是来自于BABABA中的AAA,这个时候有多少个AAA呢答案就是BBB的数量,所以就有A≤n+BA\le n+BAn+B,同理BBB也是先从BABABA中来再从ABABAB中来,所以也有B≤A+mB\le A+mBA+m,故
{A≤n+BB≤A+m\left\{\begin{matrix} A\le n+B\\ \\ B\le A+m \end{matrix}\right.An+BBA+m
AAAxxx替换,BBByyy替换,有
{y≥x−ny≤x+m\left\{\begin{matrix} y\ge x-n\\ \\ y\le x+m \end{matrix}\right.yxnyx+m
由于都是整点,可以认为是路径不经过两条直线
{y=x−n−1y=x+m+1\left\{\begin{matrix} y= x-n-1\\ \\ y= x+m+1 \end{matrix}\right.y=xn1y=x+m+1
在这里插入图片描述
根据(0,0)(0,0)(0,0)(n+m,n+m)(n+m,n+m)(n+m,n+m)的非降路径方案数为C2(n+m)n+mC_{2(n+m)}^{n+m}C2(n+m)n+m
有(0,0)到(n,m)不经过y=x+ky=x+ky=x+k的非降路径为
Cn+mn−Cn+mn−∣k∣C_{n+m}^{n}-C_{n+m}^{n-|k|}Cn+mnCn+mnk
所以带入上面两条直线可知有答案为
C2(n+m)n+m−C2(n+m)n+m−(m+1)C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n+m-(m+1)}C2(n+m)n+mC2(n+m)n+m(m+1)

C2(n+m)n+m−C2(n+m)n+m−(n+1)C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n+m-(n+1)}C2(n+m)n+mC2(n+m)n+m(n+1)
由于这两条直线平行,而且并没有某一条路径可以又经过y=x−n−1y=x-n-1y=xn1然后再经过y=x+m+1y=x+m+1y=x+m+1所以可以直接合并两次的差,所以答案就是
C2(n+m)n+m−C2(n+m)n−1−C2(n+m)m−1C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n-1}-C_{2(n+m)}^{m-1}C2(n+m)n+mC2(n+m)n1C2(n+m)m1

#include <bits/stdc++.h>
using namespace std;
const int N=4e3+5;
const int mod=1e9+7;
long long C[N][N];
void init()
{
    for(int i=0;i<N;i++)
    {
        C[i][0]=1;
        C[i][i]=1;
    }
    for(int i=0;i<N;i++)
    {
        for(int j=1;j<i;j++)
            C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
    }
}
int main()
{
    init();
    int n,m;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        printf("%lld\n",(C[2*m+2*n][n+m]-(C[2*m+2*n][n-1]+C[2*m+2*n][m-1])%mod+mod)%mod);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值