题意
输入nnn,mmm,问有多少种长度为2(n+m)2(n+m)2(n+m)的串可以拆成nnn个ABABAB子序列和mmm个BABABA子序列
思路
对于某一个串,最终的条件是让其达到有n+mn+mn+m个AAA和n+mn+mn+m个BBB,那么我们可以认为是一步一步的去给这个串添加上AAA或者BBB,直到有n+mn+mn+m个AAA和n+mn+mn+m个BBB,然后就可以转化为在网格中选取路径选BBB表示向上,选AAA表示向右,即从(0,0)(0,0)(0,0)点达到(n+m,n+m)(n+m,n+m)(n+m,n+m)点有多少方案数。
例如BABABABABABABABABA
但是这道题的串并不是任意的串,他需要使原串能拆成nnn个ABABAB子序列,和mmm个BABABA子序列。对于这样的串我们要让他满足什么条件呢。对于已经构造出nnn个ABABAB的串来说,接下来要怎么填AAA和BBB呢,考虑AAA的数量都是从哪里来的呢,首先AAA是从ABABAB中的AAA所来的,那么就有nnn个AAA是从ABABAB中来的,在考虑另一部分。为了满足题意的构造另一部分的AAA肯定是来自于BABABA中的AAA,这个时候有多少个AAA呢答案就是BBB的数量,所以就有A≤n+BA\le n+BA≤n+B,同理BBB也是先从BABABA中来再从ABABAB中来,所以也有B≤A+mB\le A+mB≤A+m,故
{A≤n+BB≤A+m\left\{\begin{matrix}
A\le n+B\\ \\
B\le A+m
\end{matrix}\right.⎩⎨⎧A≤n+BB≤A+m
AAA用xxx替换,BBB用yyy替换,有
{y≥x−ny≤x+m\left\{\begin{matrix}
y\ge x-n\\ \\
y\le x+m
\end{matrix}\right.⎩⎨⎧y≥x−ny≤x+m
由于都是整点,可以认为是路径不经过两条直线
{y=x−n−1y=x+m+1\left\{\begin{matrix}
y= x-n-1\\ \\
y= x+m+1
\end{matrix}\right.⎩⎨⎧y=x−n−1y=x+m+1
根据(0,0)(0,0)(0,0)到(n+m,n+m)(n+m,n+m)(n+m,n+m)的非降路径方案数为C2(n+m)n+mC_{2(n+m)}^{n+m}C2(n+m)n+m。
有(0,0)到(n,m)不经过y=x+ky=x+ky=x+k的非降路径为
Cn+mn−Cn+mn−∣k∣C_{n+m}^{n}-C_{n+m}^{n-|k|}Cn+mn−Cn+mn−∣k∣
所以带入上面两条直线可知有答案为
C2(n+m)n+m−C2(n+m)n+m−(m+1)C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n+m-(m+1)}C2(n+m)n+m−C2(n+m)n+m−(m+1)
和
C2(n+m)n+m−C2(n+m)n+m−(n+1)C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n+m-(n+1)}C2(n+m)n+m−C2(n+m)n+m−(n+1)
由于这两条直线平行,而且并没有某一条路径可以又经过y=x−n−1y=x-n-1y=x−n−1然后再经过y=x+m+1y=x+m+1y=x+m+1所以可以直接合并两次的差,所以答案就是
C2(n+m)n+m−C2(n+m)n−1−C2(n+m)m−1C_{2(n+m)}^{n+m}-C_{2(n+m)}^{n-1}-C_{2(n+m)}^{m-1}C2(n+m)n+m−C2(n+m)n−1−C2(n+m)m−1
#include <bits/stdc++.h>
using namespace std;
const int N=4e3+5;
const int mod=1e9+7;
long long C[N][N];
void init()
{
for(int i=0;i<N;i++)
{
C[i][0]=1;
C[i][i]=1;
}
for(int i=0;i<N;i++)
{
for(int j=1;j<i;j++)
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
}
}
int main()
{
init();
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
printf("%lld\n",(C[2*m+2*n][n+m]-(C[2*m+2*n][n-1]+C[2*m+2*n][m-1])%mod+mod)%mod);
}
return 0;
}