洛谷2495 【SDOI2011】消耗战(虚树)

本文介绍了洛谷2495题目的解题思路,强调了虚树在简化图操作中的作用。通过构建虚树,存储关键点及其最近公共祖先,然后使用动态规划求解问题。在遍历过程中,记录每个节点到根的边的最小值,并比较割点与不割点的最小值。代码实现中涉及长整型数据类型的选择。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门

【题目分析】

很好的虚树入门题。

很明显不可能询问一次就对整棵树进行一次遍历,这样会直接T掉,发现其实很多点是不用保留的,这也是虚树的好处:简化整个图然后进行操作。

所以我们将所有关键点及其LCA储存进最后的图中,构建虚树。

然后就是常规DP,每个点记一个到根的边最小值,遍历到叶子节点时直接返回最小值,否则记录所有儿子最小值之和,与直接割当前点进行比较取较小值即可。

(为啥我非得开longlong才过?)

【代码~】

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MAXN=3e5+10;
const LL MAXM=6e5+10;
const LL INF=0x3f3f3f3f;

LL n,q,cnt;
LL k,a[MAXN];
LL minn[MAXN];
LL head[MAXN],depth[MAXN],fa[MAXN],son[MAXN],siz[MAXN],top[MAXN];
LL nxt[MAXM],to[MAXM],w[MAXM];
LL dfn[MAXN],tot;
LL sta[MAXN],sum;
vector<LL> edge[MAXN];

LL Read(){
	LL i=0,f=1;
	char c;
	for(c=getchar();(c>'9'||c<'0')&&c!='-';c=getchar());
	if(c=='-')
	  f=-1,c=getchar();
	for(;c>='0'&&c<='9';c=getchar())
	  i=(i<<3)+(i<<1)+c-'0';
	return i*f;
}

void add(LL x,LL y,LL z){
	nxt[cnt]=head[x];
	head[x]=cnt;
	to[cnt]=y;
	w[cnt]=z;
	cnt++;
}

void dfs1(LL u,LL f){
	siz[u]=1;
	for(LL i=head[u];i!=-1;i=nxt[i]){
		LL v=to[i];
		if(v==f)
		  continue;
		depth[v]=depth[u]+1;
		fa[v]=u;
		minn[v]=min(minn[u],w[i]);
		dfs1(v,u);
		siz[u]+=siz[v];
		if(siz[v]>siz[son[u]])
		  son[u]=v;
	}
}

void dfs2(LL u,LL tp){
	top[u]=tp;
	dfn[u]=++tot;
	if(!son[u])
	  return ;
	dfs2(son[u],tp);
	for(LL i=head[u];i!=-1;i=nxt[i]){
		LL v=to[i];
		if(v==son[u]||v==fa[u])
		  continue;
		dfs2(v,v);
	}
}

LL lca(LL x,LL y){
	while(top[x]!=top[y]){
		if(depth[top[x]]<depth[top[y]])
		  swap(x,y);
		x=fa[top[x]];
	}
	return depth[x]<depth[y]?x:y;
}

void Add(LL x,LL y){
	edge[x].push_back(y); 
}

void insert(LL u){
	if(sum==1){
		sta[++sum]=u;
		return ;
	}
	LL lc=lca(u,sta[sum]);
	if(lc==sta[sum])
	  return ;
	while(sum>1&&dfn[sta[sum-1]]>=dfn[lc])
	  Add(sta[sum-1],sta[sum]),--sum;
	if(lc!=sta[sum])
	  Add(lc,sta[sum]),sta[sum]=lc;
	sta[++sum]=u;
}

LL cmp(LL x,LL y){
	return dfn[x]<dfn[y];
}

LL DP(LL u){
	if(!edge[u].size())
	  return minn[u];
	LL ret=0;
	LL siz=edge[u].size();
	for(LL i=0;i<siz;++i){
		LL v=edge[u][i];
		ret+=DP(v);
	}
	edge[u].clear();
	return min(ret,minn[u]);
}

int main(){
	memset(head,-1,sizeof(head));
	memset(minn,INF,sizeof(minn));
	n=Read();
	for(LL i=1;i<n;++i){
		LL x=Read(),y=Read(),z=Read();
		add(x,y,z),add(y,x,z);
	}
	dfs1(1,-1),dfs2(1,1);
	q=Read();
	while(q--){
		k=Read();
		for(LL i=1;i<=k;++i)
		  a[i]=Read();
		sort(a+1,a+k+1,cmp);
		sta[sum=1]=1;
		for(LL i=1;i<=k;++i)
		  insert(a[i]);
		while(sum){
			Add(sta[sum-1],sta[sum]),--sum;
		}
		cout<<DP(1)<<'\n';
	}
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值