【北上广深杭等大厂面试|高频AI算法题】机器学习篇…本篇介绍L1和L2正则化的区别?
【北上广深杭等大厂面试|高频AI算法题】机器学习篇…本篇介绍L1和L2正则化的区别?
文章目录
欢迎宝子们点赞、关注、收藏!欢迎宝子们批评指正!
祝所有的硕博生都能遇到好的导师!好的审稿人!好的同门!顺利毕业!
大多数高校硕博生毕业要求需要参加学术会议,发表EI或者SCI检索的学术论文会议论文。详细信息可关注VX “
学术会议小灵通
”或参考学术信息专栏:https://blog.csdn.net/gaoxiaoxiao1209/article/details/145551502
L1 正则化与 L2 正则化的区别
在机器学习和深度学习中,正则化是一种防止过拟合的技术,常用的正则化方法有 L1 正则化 和 L2 正则化。这两种正则化方法的目标都是限制模型的复杂度,从而提高其泛化能力,但它们在数学形式、效果以及实际应用中存在一些重要区别。
1. L1 正则化(Lasso)
L1 正则化(又称为 Lasso