RKNN-Toolkit2不同版本导出的RKNN模型输出不同

RKNN-Toolkit2不同版本导出的RKNN模型输出不同

在我的虚拟机中安装过RKNN-Toolkit2的1.4.0版本
在这里插入图片描述

在转换RockChip官方提供的的RetinaFace_mobile320.onnx模型(下载链接为:https://ftrg.zbox.filez.com/v2/delivery/data/95f00b0fc900458ba134f8b180b3f7a1/examples/RetinaFace/RetinaFace_mobile320.onnx)为RKNN后,查看网络输出如下:

在这里插入图片描述

可以看到RKNN-Toolkit2的1.4.0转换的RetinaFace_mobile320.onnx的三个输出都是四维的,如果使用这个RKNN模型和RockChip官方提供的后处理代码去RK3588上进行推理会报错,显示维度问题。

分析官方的后处理代码和原模型的推理代码发现三个输出应该是三维的,接着查找相关资料发现别人的RetinaFace推理没遇到问题,最后怀疑是RKNN-Toolkit2的版本转换出来的RKNN模型推理的结果不一样。

卸载RKNN-Toolkit2的1.4.0,安装最新的RKNN-Toolkit2版本时出现过下面这种情况(python=3.8)

在这里插入图片描述

开始我以为时是现在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值