Anchor DETR

Anchor DETR是一种改进的Transformer-based目标检测器,它将对象查询与锚点关联,解决了DETR中对象查询缺乏物理意义的问题。锚点设计允许每个查询关注特定区域,并能预测多个目标。此外,引入了Row-Column Decouple Attention (RCDA),在降低内存成本的同时保持性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Anchor DETR: Query Design for Transformer-Based Detector

(2021.9)

1.DETR的object query是学习的,没有物理意义也不能解释每个query注意哪。作者认为学习出来的object query不能关注特定的区域。本文提出来,object query的是基于anchor point的,这种设计下,每个object query只关注anchor点周围的目标,另外,每个object query可以在一个位置上预测多个目标(多模式)。

2.设计了一种注意力变体,可以减少内存成本。

Introduction

本文基于DETR做改进,肯定得先说一下DETR的优点就是一个可学习的object query集合来推理目标物和全局图像的关系。然后转折,说DETR局限了,也就是学习到的object query难以解释,也不能关注特定位置。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值