- 博客(1616)
- 收藏
- 关注
原创 第三届MathorCup高校数学建模挑战赛-C题:火车票购票网站优化
拟 2013 年 1 月 17 日的网站订票请求量数据,计算需要多少个队列可以满足需求。客达 27 人每秒;[7] 解争龙,李向军.基于排队论模型的网络拥塞率研究[A].计算机工程与设计,(总的票数用 N 表示,要求入队列错误率低于 0.1%,要求队列排队的时间不超。上找到一月份 12306 网站访问量趋势,并从图中进得出每百万人中日均访问量;究 12306 网站增设服务器的成本,而着重研究顾客因买票等待时间的“成本”。一些具有公信力的网站缓存查询结果,减少对 12306 网站的查询压力,进而增大。
2025-06-26 00:30:00
2
原创 AUTOSAR从入门到精通-【自动驾驶】新能源汽车“能量回收系统”
能量回收系统主要应用于电动汽车和混合动力汽车,其工作原理基于电磁感应法则。当车辆减速或制动时,车轮驱动电机反转,此时电机由驱动状态转变为发电状态。车辆动能被转化为电能,通过电路传输并储存至车载电池中。这一过程犹如给电池“充电”,将原本制动时浪费的能量重新回收利用。特别是在城市拥堵路况下,车辆频繁启停,能量回收系统的优势更为突出。每次刹车时,系统都能捕获部分能量进行储存。比如早晚高峰时段,传统汽车在制动时动能会完全转化为热能散失,而配备能量回收系统的汽车能将部分动能转化为电能储存。
2025-06-24 00:30:00
25
原创 第九届MathorCup高校数学建模挑战赛-C题:汽配件生产过程中的排程问题研究(续)(MATLAB代码实现)
TS- PSO算法如下1)程序初始化设定PSO算法的参数(w, 𝑐1, 𝑐2等随机产生初始种群,并初始设定每个粒子的速度和位置,计算每个粒子的适应值,设定每个粒子的pBest求种群的gBest设定TS的参数(禁忌长度、候选解个数等),随机产生初始解禁忌表置空;2)根据式( 1)和(2)更新每个粒子的速度和位置;3)重新计算各粒子的适应度,更新pBest和gBest;4)迭代过程中,若在Ti时间内pBest和gBest。
2025-06-22 00:30:00
9
原创 第九届MathorCup高校数学建模挑战赛-C题:汽配件生产过程中的排程问题研究
效率,最终获得了以“换色次数最少”为目标函数的排程矩阵,并求得了平均每圈的换。针对问题二,由于目标函数增加了“换支架最少”,变成了两个,单一的粒子群算法。针对问题一,本文采用粒子群算法求解建立的转移向量模型,大大提高了寻找解的。地改善了算法的效率,最终得出问题二的排程矩阵,并求得平均每圈换色次数为。只能放置在对应的特定橇上装有可拆卸支架,每个零件需要放在特定的支架上进。若相邻前后两个滑橇上的零件需要喷涂不同的面漆色,色不同种零件的指导生产量已给出,并预期在未来八圈的生产计划中尽量满足。
2025-06-20 00:30:00
13
原创 点云从入门到精通技术详解100篇-基于三维点云的大豆冠层结构参数计算(下)
5冠层尺寸计算方法5冠层尺寸计算方法冠层尺寸是植被在长期进化过程中与自然环境相互作用的结果[104],具有时空变异性,不仅在农业生产评估中具有重要意义,同时也是选育品种和提高产量的关键所在。在空间上可分为一维特征和多维特征两个方面。一维特征是指从单个维度描述冠层的大小(例如冠层高度和宽度),因其简单性(易于定义)和可用性(大多数测量仪器提供单一读数)而被广泛使用。多维特征是指从两个或两个以上的维度描述冠层的大小(例如二维空间中冠层投影面积和三维空间中冠层体积)。
2025-06-18 00:30:00
19
原创 点云从入门到精通技术详解100篇-基于三维模型匹配的机器人作业工件定位(下)
位姿计算的结果的可视化展示,利用有向包围盒模块实现出来。包围盒是一个包含了目标工件的三维几何体,可以在图像中非常直观的可视化显示,既可以进行快速碰撞检测,也能够对检测结果的正确性进行验证。常用的包围盒有如下几种:有向包围盒[56],轴向对齐包围盒[57],固定方向凹包[58],球状包围盒[59]。其中,有向包围盒的方向不受固定约束,还具有随动特性,跟随物体移动旋转,在被包含物体的主方向上生成更紧密的包围空间,且包含各表面的详细方向信息。
2025-06-17 00:30:00
15
原创 点云从入门到精通技术详解100篇-基于三维点云的大豆冠层结构参数计算(中)
4叶倾角计算方法3.2具有颜色信息的大豆冠层点云提取方法3.2.1植被点云提取通过Kinect V2传感器获取的点云数据包含了每个点的真实颜色信息(RGB值)。采用过绿植被指数(EXG)与最大类间方差(OTSU)相结合的方法提取植被点云。EXG[92]为RGB各通道值的线性组合,可增加植被与背景之间的差异程度,突出绿色部分。OTSU[93]为通过一个最佳阈值T,将一组数据分为两个类,并保证两个类之间的方差最大,从而获取点云数据中植被对象。
2025-06-16 00:30:00
10
原创 点云从入门到精通技术详解100篇-基于三维模型匹配的机器人作业工件定位(中)
常见的深度学习网络构架,大都由三个部分组成,即数据集的构建、神经网络模型构建、神经网络模型训练与调试。数据集作为神经网络训练的输入,与预测结果的准确程度息息相关。本章针对位姿估计的数据集构建过程中,具有一定精度的重构三维点云难以构建的问题,使用SfM[45]算法架构,重建并优化了一组用以训练姿态估计深度神经网络的数据集。首先介绍了重构之前数据预处理阶段,检索匹配过程的原理,并输出图像连接关系;然后使用SfM增量式三维点云重。
2025-06-15 00:30:00
16
原创 点云从入门到精通技术详解100篇-基于三维模型匹配的机器人作业工件定位
ORB 算法,通过使用快速角点决策的自适应阈值设置方法来提取足够的关键点,术的蓬勃发展,智能制造的时代迈向了高度智能化、自动化的阶段。中存在着大量重复性质的作业,抑或是危险系数较高的场合,工业机器人可以作。征检测方式的不同,常见的定位方法可大致分为基于颜色特征、几何特征及基于。定物体的三维模型,再建立二维特征点和三维特征点之间的对应关系,基于单应。基于移动边缘特征和深度特征的检测方法,为了增强鲁棒性,对于缺乏纹理特征。特征可以极其有效的减少跟踪定位过程中的漂移误差,跟踪过程更加鲁棒,定位。
2025-06-14 00:30:00
23
原创 点云从入门到精通技术详解100篇-基于三维点云的大豆冠层结构参数计算
Eye F500 3D 扫描效果如图 2-4 所示,红线为激光线的投影和宽度,蓝线为相机的投影和宽度,绿线扫描物体。植物进行简化,缺少三维信息,从而给植物的形态特征提取(如冠层体积)带来了困难。响,在一定程度上通过分析植物生长过程中的结构参数,可以掌握目前的植物生长状况。开展大豆冠层结构参数计算方法的研究,同时设计并实现大豆冠层结构参数计算系统的。限性,因此,将无人机与相机结合构建数据采集平台,为高通量农作物的表型数据获取。并提出了一种两步聚类的方法,可以根据玉米和水稻的特性准确地分割每个体的植物成。
2025-06-13 00:30:00
21
原创 第十届MathorCup高校数学建模挑战赛-D题:基于统计回归模型的新零售企业精准需求预测研究(续)(附MATLAB代码实现)
不失一般性,对排名为r=20的 skc 的销售量模型的参系数估计值进行误差与灵敏度分析,对此,我们借助 MATLAB 软件在置信水平即犯错误的可能性上限为 5%的前提下求解各参系数的置信区间与及该模型的拟合度如下表由图可见,初期拟合效果并不佳,而后期的拟合效果可观。同时,对参系数的置信区间,即参系数估计值的大小都在置信区间范围内,在 95%置信度的保证下可认为该模型是稳定的,但又存在特别是销售特征因素对应的参系数置信区间。
2025-06-11 00:30:00
18
原创 AUTOSAR从入门到精通-【自动驾驶】HUD 抬头显示原理详解(二)
抬头显示简称HUD,又被叫做平视显示系统,是指以车辆驾驶员为中心、盲操作、多功能仪表盘。它的作用,就是把时速、导航等重要的行车信息,投影到驾驶员前面的风挡玻璃上,让驾驶员尽量做到不低头、不转头就能看到时速、导航等重要的驾驶信息。
2025-06-10 00:30:00
45
原创 第十四届MathorCup高校数学建模挑战赛-D题:基于 QUBO 模型的矿山设备配置与运营方案优化(续)
金在合理范围内时,最大利润取决于矿山本身的经营情况,与启动资金关系较弱.但当。始大规模问题缩小到伊辛机可以解决的问题规模,并迭代求解.所提出的算法通过基于。时间内产生有效的解决方案,在理论上具有较高的求解效率,可以有效地找到全局最优。数可能较为困难,需要丰富的经验和专业知识.在实际应用中,如何有效地将具体问题。和启动资金灵敏度同理,我们保持除油价以外的参数与问题二求解时不变,通过改。形式也具有一定的难度.这需要对问题有深入的理解,并具备一定的建。模拟器,为此类问题的求解提供了多种途径,提高了求解问题。
2025-06-08 00:30:00
51
原创 第十届MathorCup高校数学建模挑战赛-D题:基于统计回归模型的新零售企业精准需求预测研究
2018 年 7 月 1 日至 2018 年 10 月 1 日内且累计销售额排名前 50 的 skc 的销售。处于 2019 年 6 月 1 日至 2019 年 10 月 1 日内且累计销售额排名前 10 的小类)售时间处于 2019 年 6 月 1 日至 2019 年 10 月 1 日内且累计销售额排名前 10 的。在 2019 年 10 月 1 日后 3 个月中每个月的销售量,给出每个月预测值的 MAPE。小类)在 2019 年 10 月 1 日后 3 个月中每个月的销售量,给出每个月预测值的。
2025-06-07 00:30:00
21
原创 第十四届MathorCup高校数学建模挑战赛-D题:基于 QUBO 模型的矿山设备配置与运营方案优化
的解决不仅能够提高城市轨道交通的运营效率,还能为乘客提供更加便捷的换乘服务.。过对矿山运营方案的优化,可以显著提高矿山企业的市场适应性,推动矿业的可持续发。案例中,我们的目标是为一家即将开业的智能化矿山制定一套全面的设备配置和运营方。矿车数量等约束条件,求解需要采购的挖掘机型号和数量,并给出挖掘机和矿车之间的。的精确求解过程可能不成功的情景下使用的一种方案.使用该模型,可以在有限的时间。的解决方案.也就是说,惩罚的公式使可行解等于零,不可行解等于一些正的惩罚量.。
2025-06-06 00:30:00
44
原创 AUTOSAR从入门到精通-【自动驾驶】HUD 抬头显示原理详解
HUD(Head-Up Display)即抬头显示,是一种将车速、导航等关键驾驶信息投影到驾驶员前方视野的技术,起源于军事领域,现已广泛应用于汽车行业,旨在提升驾驶安全性和便捷性。。
2025-06-05 00:30:00
45
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术(二)
随着自动驾驶技术的快速发展,视觉感知系统作为车辆的“眼睛”,其性能决定了系统的感知精度与决策效率。当前市面上车载摄像头的种类繁多,按功能可分为前视测距、环视360°全景、后视倒车辅助以及舱内监控等类型。这些不同功能的摄像头协同工作,构建起自动驾驶的多维度视觉感知系统。
2025-06-02 00:30:00
65
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构(下)
型的表面指示函数的梯度场。学处理方法,将离散的点云数据连接成连续的网格模型,并使网格模型表面能最。究,结合特征约束精简算法处理的点云数据,对点云数据进行三维重构处理,从。的形貌信息,并且表示模型表面范围的指示函数作为一个恒定存在的常数函数,基本不会发生变化,所以输入的点云数据与模型的指示函数之间有着对应的映射。对于模型表面的指示函数梯度,除了在靠近表面边界处的梯度值不为零,的指示函数,在梯度计算上与模型表面点集的内法向量方向是一致的。边界的梯度指向的方法,对于点云模型通过全局计算的方式,重构出相对较好的。
2025-06-01 00:30:00
62
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构(中)
点云数据的三维曲面重构涉及到对大量点云数据的法向求解、曲率计算以及数据点匹配查询,所以点云数据的邻域搜索方法会直接影响到后续算法的计算实现。同时三维点云数据间通常没有明显的拓扑连接关系,点云空间索引的目的就是建立数据点之间的邻域连接关系,便于后续对点云数据的计算处理。通过对采样点的邻域搜索,能够计算得到模型在该点处的相对位置表达,从而得到反映特征点云的空间几何属性信息。2.3.1点云数据的K邻域搜索点云数据的邻域是指采样数据集中距离任意点某一范围内点构成的局部点。
2025-05-31 00:30:00
28
原创 点云从入门到精通技术详解100篇-基于点云数据的特征约束精简与三维重构
作为实体模型与数字化数据之间的信息桥梁[1],以点云数据为基础的3D数据处理技术近年来逐渐成为人们研究的热点,并在数字化城市、场景构建、计算机视觉、无人驾驶系统导航以及逆向工程等领域中得到迅猛发展[2,3]。物体的表面形貌是表征三维模型基本属性的重要外在特征,如何获取现实目标物体的关键特征信息,并在虚拟的数字化世界中以高速率、高精度的实现方式对三维模型进行重构复原,引发了众多学者的研究与思考[4,5]。三维重构技术即采用计算机视觉手段对物体进行三维建模。
2025-05-30 00:30:00
55
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中的摄像头技术
自动驾驶车辆的摄像头是感知模块的重要组成,其成本低、分辨率高且能捕捉丰富的语义信息,使其在车道识别、障碍物检测、交通标志和信号灯识别等任务中不可或缺。不同类型的摄像头(单目、双目、环视鱼眼、红外补光)在视场角和深度估计方式上各有侧重对于摄像头来说,高分辨率、高帧率、宽动态范围和低光性能成为其设计的核心指标。摄像头数据需经过畸变校正、图像增强、目标检测、深度估计和鸟瞰图重投影等多级算法处理,以便能为决策层提供可靠信息。为了保证多路摄像头的协同,精确的内外参标定与微秒级时钟同步必不可少。当前。
2025-05-29 00:30:00
20
原创 第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题(续)(附MATLAB代码实现)
响,新增物流场地为减轻原线路的货运压力,选择同重要性排名前五的物流场地相距较。问题三在问题二模型的基础上还应添加对关闭线路以及新开线路的约束。为使各线路负荷均衡,引入路线货运量负荷,通过方差衡量负荷的均衡程度。允许进行动态调整,则为动态规划问题,即应综合考虑每天的决策并考虑不同天。的值相对越大,则说明该研究对象距离最劣解越远,则研究对象越好,以综合得。下面比较本问与问题二的不同。3 :站点的输出货物次数,描述工作频率,在物流场地的输出次数多则。关系,若出现未正常流转结果,应分析其未正常流转的货量与负荷。
2025-05-28 00:30:00
48
原创 AUTOSAR从入门到精通-【自动驾驶】自动驾驶中常提的“点云”到底是什么?
点云(Point Cloud):就是用很多“点”来表示一个物体或场景的三维形状和结构。(用点描绘的3D画,好比素描,但不是用线条勾勒,而是“点点点点”拼出物体形状)观察这幅图像,你可以注意到以下几点:由“点”构成:整个场景,无论是车辆、建筑还是树木,都不是由连续的面构成的,而是由大量离散的点组成的。每个点代表了激光雷达扫描到的一个真实世界中的位置。三维立体感:尽管是2D图像,但你可以清晰地感知到场景的深度和物体的三维形状。这是因为每个点都记录了精确的 (X, Y, Z) 空间坐标。
2025-05-28 00:30:00
1415
原创 第十三届MathorCup高校数学建模挑战赛-C题:基于 ARIMA 模型的电商物流调运与优化问题
化,具有周期波动性与总体稳定性,在 2022 年有四次较大波动,考虑季节性因素影响。当突遇疫情、地震等事件时,将会导致物流场地临时或永久停用,其处理的包裹将会被。紧急分流到其他物流场地,以上这些因素均会影响我们各条线路运输包裹的数量,以及。化的线路尽可能少,同时我们要保证各线路的工作负荷尽可能均衡。流转,我们要对此场地关停所导致的货量发生变化的线路数及网络负荷情况进行分析;流场地,假设新开线路的运输能力的上限为已有线路运输能力的最大值。动态调整货物量数学模型,在此问题上我们要考虑到时间对模型的动态调整。
2025-05-27 00:30:00
47
原创 第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化(续)(附python代码实现)
题目已经给定的可以作为起点/终点的站点如图 8(深色表示可以作为起点/终点,浅色表示未被选为起点/终点):列车开行数量和列车发车频率都受列车最大满载率的直接影响,从而对企业运营水平和服务水平造成影响。通过分析不同满载率下的列车开行方案,可以得到满载率与企业运营水平和服务水平之间的关系。在问题一中,我们已经研究了最大满载率为 100%的情况,现将最大满载率分别取 90%、95%、105%、110%、115%、120%的进行分析,灵敏度分级结果见表 9。
2025-05-26 00:30:00
52
原创 第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用(续)(附python代码实现)
最优解的问题,它通过接受劣解的策略在保证全局最优解的概率,因此能求解出较为优。秀的解,但收敛速度比较缓慢。为进一步展示三种求解思路的效果,绘制如图所示的迭。同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。产生新解的规则为:在当前解的附近随机产生一个新解,计算新解的目标函数值,同样进一步分析问题本质以及了解三种求解思路的优化效果,收集三种求解过程中。模型,以减少变量和约束的数量。工具求解的效果也比较好,收敛速度相较于模拟退火算法更快,可以用于求解许多实际问题,但在处理大规模问题时,
2025-05-25 00:30:00
31
原创 第十三届MathorCup高校数学建模挑战赛-B题:基于 NSGA-Ⅱ的列车时刻表优化
其他区间只有大交路列车,因此我们将 30 个站点分为小交路区间和其他区间进行讨论。次,对以上 4 个影响因素进行灵敏度分析,得到其与企业运营水平和服务水平的量化关。标规划模型,可用非支配遗传算法(NSGA)进行求解。结合实际要求,从停站时间、追踪间隔、客流需求等多方面出发,得到模型的约束条件。首先,将运行线路分为小交路区间和其他区间,对不同区间进行分类讨论,得到两个区间的企业运营成本和服务水平函数,从而得到整个线路的目标函数。同时,我们结合实际情况,对问题一给出的模型进行改进,讨论了不同的列车编组。
2025-05-24 00:30:00
55
原创 第十三届MathorCup高校数学建模挑战赛-A题:量子计算机在信用评分卡组合优化中的应用
具体来说,通过率越高,通过贷款资格审核的客户数量越多,银行贷款利息收入就越多;的哈密顿算符,引入惩罚标量,得出对应的惩罚函数,将其加入到原目标函数中,转化。信用评分卡可设置不同的阈值,伴随每个阈值可对应不同的通过。策略要确定多个阈值,由此会拥有多种通过率和坏帐率的排列组合,需要选择最优的阈。反的,通过率越低,坏账率也越低。但高通过率一般对应高坏帐率,意味着坏账风险越大,坏帐损失也越大。值,每种阈值下均提供对应的通过率和坏账率。控制工具,用于评估信用风险,不同的信用评分卡之间存在着一定的差异,如何选择最。
2025-05-23 00:30:00
43
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(下)
随着隧道测量技术的进步,三维扫描生成的点云数据量庞大且复杂,包含大量噪声,增加了计算机处理的难度。因此,点云数据的精简成为后续优化和三维重建的关键步骤。点云精简需平衡精度、简度和速度,传统方法如基于聚类、迭代和公式的简化各有优劣,但常导致边缘缺失或点云不均匀。本文提出一种基于图信号的特征保留优化点云精简算法,通过将点云表示为图结构,优化特征损失和均匀性损失,实现点云精简。实验表明,该算法在保留尖锐特征和均匀性方面优于传统方法,如体素下采样、随机采样等,尤其在复杂点云数据上表现更佳。此外,本文还改进了泊松曲面
2025-05-21 00:30:00
43
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建(中)
本文介绍了基于ROS系统的二维激光雷达三维扫描实验,通过树莓派进行数据保存与传输,并在Windows11系统的虚拟机中开发。实验采集了激光雷达的距离、角度信息及IMU的位姿信息,并通过RVIZ模块显示点云数据。数据通过MATLAB转换为PCD文件,使用PCL库进行点云处理。文章还详细讨论了激光雷达点云数据的特点、类型及预处理方法,包括噪声去除、数据平滑和精简。此外,介绍了点云三维重建算法,如三角剖分和泊松曲面重建,以及这些算法在隧道形貌重建中的应用。
2025-05-19 00:30:00
63
原创 点云从入门到精通技术详解100篇-基于二维激光雷达的隧道形貌三维重建
保持隧道结构的强度和稳定性,并通过对变形的及时监测和维护,才能实现快速、稳定、因为其特殊的建造过程以及线路里程长等特点,对施工和运营中的维护提出了很高的质。数据表明,我国铁路、公路系统的建设规模庞大,隧道建设一直是其中的重要组成部分。老化等特点,加之年久失修,这些隧道不仅失去建立之初的功能,同时存在安全隐患。在施工和运行过程中,由于岩土荷载、衬砌支护、施工偏差等因素的变化,导致隧道产。隧道几何形状的安全性直接影响隧道的性。能,安全性的缺乏导致大量资金流失,并且还会影响隧道的正常运营,隧道的维护和使。
2025-05-17 00:30:00
96
原创 第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型(续)
短期内的销量,从而能够很好的指导营销和生产,为大数据时代下新零售的发展作出贡献。最后对预测结果进行之前使序列稳定的操作的逆操作(取指数,差分的逆操作),就可以得到原始数据的。也存在一定的问题,例如没有对不同节假日对销量的影响做进一步区分,如国庆之类的传统节日和双十一。建立起来的,因此时间序列的平稳性是建模的重要前提。占有率六个因素对销量的影响,其中,价格波动率我们定义为一年内产品的实际价格方差。营销日里的销量冲击,对于企业合理高效的进行仓库物品的调配,追求资源最大化、利益最大化作出了。
2025-05-14 00:30:00
62
原创 第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究(续)
划分好的不同比例的数据集上训练,并且通过不断调整超参数来优化训练效果,具体的。与输入甲骨文图像大小之间的关系,我们尝试增加网络的复杂度同时降低网络输入图像。目标,由于其尺寸较小,预测的检测框可能与真实框之间的重叠区域相对较小,这可能。过大,导致训练模型过拟合,所以在验证集上的精度表现不高,对此我们进一步划分数。的特征表征,更意味着提高准确率,不一定需要堆叠更深的层或者增加神经元个数等,因此针对第四问,我们在给定的原始训练集基础上进行了数据扩充,加入了。模型时,需要确保输入图像具有一致的尺寸。
2025-05-13 00:30:00
73
原创 AUTOSAR从入门到精通-【自动驾驶】车路云协同(二)
蜂窝车联网(C-V2X)、边缘计算网络和高精度定位系统的技术发展,为车车、车路、车人和车云系统的全面融合提供了有效支撑。需要建立高效的数据处理和管理平台,实现数据的实时采集、处理和分析,以支持智能决策。制定统一的技术标准和互操作性协议,确保不同系统和设备之间能够无缝对接和协同工作。车路云协同是一种先进的交通管理技术,它通过车、路、云三者的协同作用,实现了全方位的动态实时信息交互,从而提高了交通安全性和效率。
2025-05-12 00:30:00
72
原创 第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化(续)(附MATLAB代码实现)
略的收益和通过率计算得到,表达式变得简洁。对于三重信用卡组合策略的收益,即式。个数更多,在化简过程中首先处理带来负收益的阈值,并且对三次交叉项使用对数法分。于是,三重信用卡组合策略的收益可直接由三个单信用卡评分策略的收益和通过率。问题三的建模与求仍然解遵循计算收益,化简收益表达式,构建优化模型,转化为。的等价变换后,双信用卡组合策略的收益可直接由两个单信用卡评分策。求解几个主要步骤进行。相比问题一和二,问题三的优化变量。求解器对该模型进行求解。中的约束条件,设惩罚函数。
2025-05-12 00:30:00
63
原创 第十届MathorCup高校数学建模挑战赛-D题:基于 ARIMA-SVM 和 Holt-Winters 的新零售精准销量模型
的周期性与季节性,对于国庆、双十一等节假日的敏感度较高,我们以天为基本都单位,对目标小类下的。个节假日的促销力度以及其经济大环境等的区别,我们首先单独分析四个节假日的数据,得到每个节假。的数据计算了各指标在所有节假日中的综合权重值。在如今的需求推动下,新零售企业的生产模式逐步向多品种、小批量迈进,这让商场内零售店铺里的。问题三:为了满足企业更加精准的营销需求,试着建立相关数学模型,在考虑小类预测结果的同时,问题四:请给企业写一份推荐信,向企业推荐你的预测结果和方法,并说明你们的方案的合理性以。
2025-05-11 00:30:00
72
原创 第十四届MathorCup高校数学建模挑战赛-B题:基于深度学习的甲骨文原始拓片单字自动分割与识别研究
型,实现对不同的甲骨文原始拓片图像进行自动单字分割,并从不同维度进行模型评估。到甲骨字符并提取独立的文字区域,这是字形破译的前提。和计算机视觉技术,在甲骨文原始拓片图像的复杂背景中提取出特征鲜明且互不交叠的。征的特殊考量,通用的代表性图像分割方法目前尚不能对甲骨文原始拓片图像中的文字。提取图像特征,建立甲骨文图像预处理模型,实现对甲骨文图像干扰元素的初步判别和。的差异,图像的亮度和对比度可能不均匀,需进行调整以便更好地突出文字信息。这一任务本质上属于图像分割的范畴,但与传统的图像分割任。
2025-05-10 00:30:00
93
原创 AUTOSAR从入门到精通-【自动驾驶】车路云协同(三)
车路协同,这一将车辆、道路基础设施与云计算平台深度融合的技术,正逐渐成为智能化交通生态系统建设的关键。通过信息与通信技术的桥梁作用,车、路、云之间实现了无缝的信息交换与协同工作,共同构建出一个更加智慧的交通生态系统。这一技术不仅有助于提升车辆的智能化水平,通过提供丰富的交通和道路信息来辅助驾驶,还能促进车队管理的智能化。同时,车路云协同系统更是智慧交通和智慧城市建设的重要推动力,能够汇集海量动静态信息数据,以数字化手段强化基础设施、交通管理、公共服务和事故应急响应,从而丰富城市管理的手段和方式。
2025-05-09 00:30:00
77
原创 第十三届MathorCup高校数学建模挑战赛-A题: QUBO 模型的信用评分卡组合优化
粒子群优化算法 (PSO : Particle swarm optimization) 是一种进化计算技术(evolutionary computation)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解,
2025-05-09 00:30:00
43
2009年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2009年-完整版数据及试题
2024-01-04
2007年全国研究生数学建模竞赛优秀论文-C题:高速公路路面质量改进的分析论文及源代码(附MATLAB代码及lingo代码实现)
2024-01-04
MATLAB算法实战应用案例精讲-多跟踪器优化算法-(MTOA)-MATLAB实现源代码
2023-11-11
Can网络诊断15765中文-车载诊断标准ISO_15765-1(中文)总体信息(20160922093326).rar
2023-11-04
2007年全国研究生数学建模竞赛-“华为杯”研究生数学建模竞赛2007年-完整版数据及试题
2023-09-20
高教社杯数模竞赛特辑论文篇-2013年A题:车道被占用对城市道路通行能力的影响(代码实现)
2023-08-31
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人