目录 摘 要 一、问题重述 1.1 问题背景 1.2 问题描述 二、模型假设及符号说明 2.1 模型假设 2.2 符号说明 三、问题分析 3.1 问题一的分析 3.2 问题二的分析 3.3 问题三的分析 3.4 问题四的分析 四、问题一的模型建立与求解 4.1 甲骨文原始拓片图像主要干扰因素及噪声分析 4.2 基于稀疏表示和低秩逼近的去噪算法 4.3 甲骨文原始拓片图像预处理模型的建立 4.3.1 同态滤波图像增强 4.3.2 图像边缘增强 4.3.3 甲骨文原始拓片图像预处理模型 4.4 甲骨文原始拓片图像预处理 4.4.1 图像预处理评价指标 4.4.2 图像预处理与结果分析 五、问题二的模型建立与求解 5.1 基于 YOLOv5 的甲骨文字符分割模型 5.1.1 YOLOv5 网络模型 5.1.2 YOLOv5 网络结构及关键技术 5.2 基于 YOLOv8 的甲骨文字符分割模型 5.2.1 YOLOv8 网络模型 5.2.2 YOLOv8 较 YOLOv5 的网络改进 5.3 基于 YOLO 网络的甲骨文图像分割 5.3.1 甲骨文图像分割流程 5.3.2 数据预处理 本文篇幅较长,分为上下两篇,下篇详见基于深度学习的甲骨文原始拓片单字自动分割与识别研究(续) 摘 要 甲骨文拓片图像分割一直是甲骨文研究中重要的研究内容,任务是从甲骨拓片中找 到甲骨字符并提取独立的文字区域,这是字形破译的前提。然而,甲骨文拓片图像分割