C3DPO项目安装与使用教程
1. 项目的目录结构及介绍
C3DPO(Canonical 3D Pose Networks for Non-rigid Structure From Motion)项目是一个基于PyTorch的开源项目,主要用于非刚性运动的三维姿态网络。以下是项目的目录结构及其介绍:
cfgs/
:存放项目的配置文件,这些文件包含了不同数据集的配置信息。dataset/
:包含了项目所需的数据集处理和加载的代码。tools/
:提供了一些用于项目运行的工具函数和脚本。visuals/
:包含了用于可视化的代码和资源。.gitignore
:定义了Git应该忽略的文件和目录。CHANGELOG.md
:记录了项目的更新和变更历史。CODE_OF_CONDUCT.md
:项目的行为准则。CONTRIBUTING.md
:提供了贡献代码的指南。LICENSE
:项目的许可协议。README.md
:项目的说明文档。config.py
:项目的配置模块,用于定义全局参数。demo.py
:用于演示项目的预训练模型。evaluate.py
:用于评估预训练模型的性能。experiment.py
:用于启动模型训练和评估的脚本。model.py
:定义了项目使用的模型结构。requirements.txt
:列出了项目运行所需的依赖包。splash_video.gif
:项目的宣传动画。
2. 项目的启动文件介绍
项目的启动主要是通过demo.py
、evaluate.py
和experiment.py
三个脚本文件来完成的。
demo.py
:运行此脚本来加载预训练模型,并在一个样例骨架上生成三维图形。此脚本会使用Visdom服务来显示结果,需要先启动Visdom服务。evaluate.py
:此脚本用于评估预训练模型的性能。它会自动下载所需的数据和模型,然后计算并输出评估指标。experiment.py
:此脚本用于启动一个新的训练任务。需要指定一个配置文件(--cfg_file
),该文件定义了数据集、模型结构和训练参数等信息。
3. 项目的配置文件介绍
项目的配置文件位于cfgs/
目录下,每个配置文件都是一个YAML文件,对应于不同数据集的配置。
- 配置文件包含了数据集的路径、模型的参数、训练过程中的超参数等信息。
- 在运行
experiment.py
时,需要通过--cfg_file
参数指定使用哪个配置文件。 - 每个配置文件都根据数据集的名称命名,如
h36m.yaml
对应Human3.6m数据集的配置。
在开始训练或评估模型之前,确保已经仔细阅读并正确配置了相应的YAML文件。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考