ReFinED项目使用教程
1. 项目的目录结构及介绍
ReFinED项目是一个用于实体链接的开源项目,其目录结构如下:
dist/
:包含项目的可执行文件和资源文件。example_scripts/
:包含一些示例脚本,用于展示如何使用ReFinED进行实体链接。src/
:包含项目的源代码,包括模型定义、数据处理、实体链接等核心功能。refined/
:ReFinED的核心代码目录,包含模型架构和推理处理逻辑。test/
:包含测试代码和测试数据。
.gitignore
:指定Git应该忽略的文件和目录。CODE_OF_CONDUCT.md
:项目的行为准则。CONTRIBUTING.md
:贡献指南,说明如何为项目贡献代码或文档。DEVELOPMENT.md
:开发指南,包含项目开发流程和最佳实践。FINE_TUNING.md
:细调指南,说明如何使用自定义数据集对模型进行细调。LICENSE
:项目的许可证文件,本项目采用Apache-2.0协议。README.md
:项目的自述文件,包含项目简介、安装和使用说明。TRAINING.md
:训练指南,说明如何训练ReFinED模型。package.py
:用于打包项目的Python文件。replicate_results.py
:用于复现论文结果的Python脚本。requirements.txt
:项目依赖的Python包列表。setup.py
:用于构建和安装项目的Python脚本。
2. 项目的启动文件介绍
项目的启动主要是通过src/refined/inference/processor.py
中的Refined
类完成的。以下是一个基本的启动示例:
from refined.inference.processor import Refined
# 从预训练模型加载
refined = Refined.from_pretrained(
model_name='wikipedia_model_with_numbers',
entity_set='wikipedia'
)
# 处理文本
spans = refined.process_text("England won the FIFA World Cup in 1966.")
这段代码首先导入了Refined
类,然后使用from_pretrained
方法加载了一个预训练的模型。之后,使用process_text
方法对输入文本进行实体链接处理。
3. 项目的配置文件介绍
ReFinED项目的配置主要是通过requirements.txt
和setup.py
文件进行管理的。
requirements.txt
文件列出了项目依赖的Python包,例如:
torch>=1.8.0
transformers>=4.6.0
tqdm
lmdb
setup.py
文件用于定义如何构建和安装项目,以及项目的元数据,例如:
from setuptools import setup, find_packages
setup(
name='ReFinED',
version='1.0',
packages=find_packages(),
install_requires=[
'torch>=1.8.0',
'transformers>=4.6.0',
'tqdm',
'lmdb',
],
# 其他元数据
)
通过这些配置文件,用户可以轻松地安装和配置ReFinED项目,以进行实体链接任务。