Image-Harmonization-Dataset-iHarmony4:图像调和的开源数据集

Image-Harmonization-Dataset-iHarmony4:图像调和的开源数据集

Image-Harmonization-Dataset-iHarmony4 [CVPR 2020] The first large-scale public benchmark dataset for image harmonization. The code used in our paper "DoveNet: Deep Image Harmonization via Domain Verification", CVPR2020. Useful for image harmonization, image composition, etc. Image-Harmonization-Dataset-iHarmony4 项目地址: https://gitcode.com/gh_mirrors/im/Image-Harmonization-Dataset-iHarmony4

项目介绍

在图像处理领域,图像调和(Image Harmonization)是一种重要的技术,用于将一个图像的前景区域与另一个图像的背景区域融合,使合成图像看起来更加自然和协调。然而,由于高质量调和图像的生成既费时又需要专业技能,导致公开的高质量调和图像数据集非常稀缺。针对这一问题,Image-Harmonization-Dataset-iHarmony4 的发布提供了首个大规模的图像调和数据集。

iHarmony4 包含了四个子数据集:HCOCO、HAdobe5k、HFlickr 和 Hday2night。每个子数据集都包含了合成的复合图像、前景掩码以及对应的真实图像。这些数据集的发布,为图像调和领域的研究提供了宝贵的数据资源。

项目技术分析

iHarmony4 数据集的构建依赖于多种颜色传递方法,这些方法用于将从参考图像中获取的颜色信息传递到真实图像上。颜色传递方法根据是否参数化以及是否在相关/去相关的颜色空间中可以分为四类。iHarmony4 选择了每一类中的一种代表性方法来实现图像的合成。

此外,项目还提供了 DoveNet 的 PyTorch 实现和预训练模型。DoveNet 是一种深度图像调和网络,通过域验证来提高图像调和的真实性。该网络的有效性已在 CVPR2020 接受的论文中得到验证。

项目及技术应用场景

iHarmony4 数据集的应用场景广泛,主要包括:

  1. 图像编辑:在图像合成、图像修复等领域,利用 iHarmony4 数据集可以训练模型,生成更加自然的图像合成效果。
  2. 视觉特效:在电影、游戏等视觉特效制作中,iHarmony4 可以为特效师提供高质量的数据集,以增强视觉效果的逼真度。
  3. 学术研究:对于图像处理和计算机视觉的研究人员来说,iHarmony4 是一个宝贵的研究资源,可用于评估和改进调和算法的性能。

项目特点

iHarmony4 数据集具有以下几个显著特点:

  1. 大规模数据集:iHarmony4 是首个大规模的图像调和数据集,包含了大量的合成图像和对应的真实图像,为算法训练提供了丰富的样本。
  2. 多样化场景:数据集中的图像覆盖了多种场景,包括自然风光、城市建筑、人物等,增加了模型的泛化能力。
  3. 开放共享:iHarmony4 数据集在 Baidu Cloud 和 OneDrive 上提供,方便用户下载和使用。
  4. 预训练模型:项目提供了 DoveNet 的预训练模型,用户可以直接使用或在此基础上进行进一步训练。

通过以上分析,iHarmony4 数据集无疑为图像调和领域的研究提供了强有力的支持,为相关技术的发展和应用打下了坚实的基础。无论是学术研究还是实际应用,iHarmony4 都是一个值得推荐的开源项目。

Image-Harmonization-Dataset-iHarmony4 [CVPR 2020] The first large-scale public benchmark dataset for image harmonization. The code used in our paper "DoveNet: Deep Image Harmonization via Domain Verification", CVPR2020. Useful for image harmonization, image composition, etc. Image-Harmonization-Dataset-iHarmony4 项目地址: https://gitcode.com/gh_mirrors/im/Image-Harmonization-Dataset-iHarmony4

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

内容概要:本文档是一份关于大数据开发的笔试题目集合,涵盖了多个计算机科学领域的知识点。主要内容包括:数组排序算法的应用,如给出了一段不完整的冒泡排序代码示例;二叉树的基本操作,包括普通二叉树的遍历方式(先序遍历),以及针对大规模数据(如一亿个节点)时避免服务器崩溃的优化策略——采用分布式计算思想将单棵大树拆分为多棵小树并行处理;人力资源系统的数据库设计方案,涉及到了员工信息存储所需的字段(如ID、姓名、工资、上级ID、层级)、展示公司内部架构的SQL语句(利用CTE公共表达式或者PL/SQL中的特定语法来构建递归查询),还有统计某个管理者所辖人数的方法论。 适合人群:正在准备大数据相关岗位面试的技术人员,尤其是那些希望加深对数据结构、算法以及数据库设计等方面理解的人群。 使用场景及目标:①帮助求职者熟悉常见的编程技巧与理论知识,提高解决实际问题的能力;②为从事企业级应用开发工作的程序员提供参考案例,以便更好地理解和实施复杂的数据管理和业务逻辑建模任务。 阅读建议:由于文档中包含了多种类型的题目,建议读者按照自己的薄弱环节选择重点复习的内容。对于排序算法部分,应该注意理解各种经典算法的工作机制及其优缺点;对于二叉树的问题,则要掌握不同遍历顺序的特点,并思考如何应对海量数据带来的挑战;最后,在研究HR系统相关的数据库设计时,除了要学会正确地创建表格外,还应学会运用适当的SQL语句来进行高效的数据检索和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

颜殉瑶Nydia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值