MMDeploy模型部署全流程指南
项目概述
MMDeploy是一个功能强大的模型部署工具集,专门为OpenMMLab系列算法提供端到端的部署解决方案。它能够将训练好的PyTorch模型高效地转换为多种推理引擎支持的格式,并提供了跨平台的推理SDK,大大简化了从训练到部署的整个流程。
核心功能架构
MMDeploy的部署流程主要包含三个关键组成部分:
-
模型转换器(Model Converter)
负责将PyTorch模型转换为目标推理引擎支持的格式,支持ONNX、TorchScript等中间表示(IR)格式,并能进一步转换为特定后端模型。 -
MMDeploy模型(MMDeploy Model)
包含转换后的后端模型和完整的推理元信息,为SDK提供完整的推理上下文。 -
推理SDK(Inference SDK)
封装了预处理、推理和后处理的完整流程,提供多语言接口(C++/Python/C#/Java等)。
环境准备指南
基础环境配置
-
Python环境
推荐使用Python 3.8+,可通过Miniconda创建隔离环境:conda create --name mmdeploy python=3.8 -y conda activate mmdeploy
-
PyTorch安装
根据硬件环境选择对应版本:- GPU环境:
conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
- CPU环境:
conda install pytorch torchvision cpuonly -c pytorch
- GPU环境:
MMDeploy安装方案
-
安装MMCV基础库
pip install -U openmim mim install "mmcv>=2.0.0"
-
安装MMDeploy核心包
- 模型转换工具:
pip install mmdeploy==1.3.1
- 推理运行时(按需选择):
# CPU版本 pip install mmdeploy-runtime==1.3.1 # GPU版本 pip install mmdeploy-runtime-gpu==1.3.1
- 模型转换工具:
-
推理引擎安装
- TensorRT安装示例:
pip install TensorRT-8.2.3.0/python/tensorrt-8.2.3.0-cp38-none-linux_x86_64.whl export TENSORRT_DIR=/path/to/TensorRT-8.2.3.0 export LD_LIBRARY_PATH=${TENSORRT_DIR}/lib:$LD_LIBRARY_PATH
- ONNX Runtime安装示例:
pip install onnxruntime-gpu==1.8.1
- TensorRT安装示例:
模型转换实战
以MMDetection中的Faster R-CNN模型为例,展示完整转换流程:
python mmdeploy/tools/deploy.py \
mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
mmdetection/demo/demo.jpg \
--work-dir mmdeploy_model/faster-rcnn \
--device cuda \
--dump-info
关键参数说明:
- 第一个参数:部署配置文件,定义转换流水线
- 第二个参数:原始模型配置文件
- 第三个参数:训练好的模型权重
- --work-dir:指定输出目录
- --device:指定转换设备
模型推理方式
1. 使用转换器API推理
from mmdeploy.apis import inference_model
result = inference_model(
model_cfg='mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',
deploy_cfg='mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py',
backend_files=['mmdeploy_model/faster-rcnn/end2end.engine'],
img='mmdetection/demo/demo.jpg',
device='cuda:0')
2. 使用SDK推理
Python示例:
from mmdeploy_runtime import Detector
import cv2
detector = Detector(model_path='mmdeploy_models/faster-rcnn',
device_name='cuda',
device_id=0)
img = cv2.imread('input.jpg')
bboxes, labels, _ = detector(img)
C++示例:
#include "mmdeploy/detector.hpp"
mmdeploy::Model model("mmdeploy_model/faster-rcnn");
mmdeploy::Detector detector(model, mmdeploy::Device{"cuda", 0});
cv::Mat img = cv::imread("input.jpg");
auto dets = detector.Apply(img);
模型评估方法
使用测试工具评估部署模型:
python mmdeploy/tools/test.py \
mmdeploy/configs/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
--model mmdeploy_model/faster-rcnn/end2end.engine \
--metrics accuracy speed \
--device cuda:0
性能优化技巧
-
预处理加速
使用融合变换(fuse transform)技术优化预处理流程 -
引擎优化
- 对TensorRT模型使用FP16/INT8量化
- 调整动态形状范围
- 启用CUDA Graph
-
内存优化
- 使用内存池技术
- 优化中间结果内存布局
常见问题解答
Q1: 转换过程中出现shape不匹配错误怎么办?
A1: 检查部署配置中的input_shape设置,确保与模型预期输入一致
Q2: 推理结果与原始模型有差异?
A2: 尝试以下步骤:
- 检查模型转换时的opset_version
- 验证预处理/后处理的一致性
- 启用调试模式查看中间结果
Q3: 如何支持自定义模型?
A3: 需要:
- 实现自定义算子的转换逻辑
- 注册对应的后处理模块
- 编写对应的部署配置
通过本指南,您应该已经掌握了使用MMDeploy进行模型部署的核心流程。无论是简单的模型转换还是复杂的生产环境部署,MMDeploy都能提供强大的支持。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考