MMDeploy模型部署全流程指南

MMDeploy模型部署全流程指南

mmdeploy OpenMMLab Model Deployment Framework mmdeploy 项目地址: https://gitcode.com/gh_mirrors/mm/mmdeploy

项目概述

MMDeploy是一个功能强大的模型部署工具集,专门为OpenMMLab系列算法提供端到端的部署解决方案。它能够将训练好的PyTorch模型高效地转换为多种推理引擎支持的格式,并提供了跨平台的推理SDK,大大简化了从训练到部署的整个流程。

核心功能架构

MMDeploy的部署流程主要包含三个关键组成部分:

  1. 模型转换器(Model Converter)
    负责将PyTorch模型转换为目标推理引擎支持的格式,支持ONNX、TorchScript等中间表示(IR)格式,并能进一步转换为特定后端模型。

  2. MMDeploy模型(MMDeploy Model)
    包含转换后的后端模型和完整的推理元信息,为SDK提供完整的推理上下文。

  3. 推理SDK(Inference SDK)
    封装了预处理、推理和后处理的完整流程,提供多语言接口(C++/Python/C#/Java等)。

环境准备指南

基础环境配置

  1. Python环境
    推荐使用Python 3.8+,可通过Miniconda创建隔离环境:

    conda create --name mmdeploy python=3.8 -y
    conda activate mmdeploy
    
  2. PyTorch安装
    根据硬件环境选择对应版本:

    • GPU环境:
      conda install pytorch torchvision cudatoolkit=11.3 -c pytorch
      
    • CPU环境:
      conda install pytorch torchvision cpuonly -c pytorch
      

MMDeploy安装方案

  1. 安装MMCV基础库

    pip install -U openmim
    mim install "mmcv>=2.0.0"
    
  2. 安装MMDeploy核心包

    • 模型转换工具:
      pip install mmdeploy==1.3.1
      
    • 推理运行时(按需选择):
      # CPU版本
      pip install mmdeploy-runtime==1.3.1
      # GPU版本
      pip install mmdeploy-runtime-gpu==1.3.1
      
  3. 推理引擎安装

    • TensorRT安装示例:
      pip install TensorRT-8.2.3.0/python/tensorrt-8.2.3.0-cp38-none-linux_x86_64.whl
      export TENSORRT_DIR=/path/to/TensorRT-8.2.3.0
      export LD_LIBRARY_PATH=${TENSORRT_DIR}/lib:$LD_LIBRARY_PATH
      
    • ONNX Runtime安装示例:
      pip install onnxruntime-gpu==1.8.1
      

模型转换实战

以MMDetection中的Faster R-CNN模型为例,展示完整转换流程:

python mmdeploy/tools/deploy.py \
    mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
    mmdetection/configs/faster_rcnn/faster-rcnn_r50_fpn_1x_coco.py \
    checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth \
    mmdetection/demo/demo.jpg \
    --work-dir mmdeploy_model/faster-rcnn \
    --device cuda \
    --dump-info

关键参数说明

  • 第一个参数:部署配置文件,定义转换流水线
  • 第二个参数:原始模型配置文件
  • 第三个参数:训练好的模型权重
  • --work-dir:指定输出目录
  • --device:指定转换设备

模型推理方式

1. 使用转换器API推理

from mmdeploy.apis import inference_model

result = inference_model(
    model_cfg='mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py',
    deploy_cfg='mmdeploy/configs/mmdet/detection/detection_tensorrt_dynamic-320x320-1344x1344.py',
    backend_files=['mmdeploy_model/faster-rcnn/end2end.engine'],
    img='mmdetection/demo/demo.jpg',
    device='cuda:0')

2. 使用SDK推理

Python示例

from mmdeploy_runtime import Detector
import cv2

detector = Detector(model_path='mmdeploy_models/faster-rcnn', 
                   device_name='cuda', 
                   device_id=0)
img = cv2.imread('input.jpg')
bboxes, labels, _ = detector(img)

C++示例

#include "mmdeploy/detector.hpp"

mmdeploy::Model model("mmdeploy_model/faster-rcnn");
mmdeploy::Detector detector(model, mmdeploy::Device{"cuda", 0});
cv::Mat img = cv::imread("input.jpg");
auto dets = detector.Apply(img);

模型评估方法

使用测试工具评估部署模型:

python mmdeploy/tools/test.py \
    mmdeploy/configs/detection/detection_tensorrt_dynamic-320x320-1344x1344.py \
    mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py \
    --model mmdeploy_model/faster-rcnn/end2end.engine \
    --metrics accuracy speed \
    --device cuda:0

性能优化技巧

  1. 预处理加速
    使用融合变换(fuse transform)技术优化预处理流程

  2. 引擎优化

    • 对TensorRT模型使用FP16/INT8量化
    • 调整动态形状范围
    • 启用CUDA Graph
  3. 内存优化

    • 使用内存池技术
    • 优化中间结果内存布局

常见问题解答

Q1: 转换过程中出现shape不匹配错误怎么办?
A1: 检查部署配置中的input_shape设置,确保与模型预期输入一致

Q2: 推理结果与原始模型有差异?
A2: 尝试以下步骤:

  • 检查模型转换时的opset_version
  • 验证预处理/后处理的一致性
  • 启用调试模式查看中间结果

Q3: 如何支持自定义模型?
A3: 需要:

  1. 实现自定义算子的转换逻辑
  2. 注册对应的后处理模块
  3. 编写对应的部署配置

通过本指南,您应该已经掌握了使用MMDeploy进行模型部署的核心流程。无论是简单的模型转换还是复杂的生产环境部署,MMDeploy都能提供强大的支持。

mmdeploy OpenMMLab Model Deployment Framework mmdeploy 项目地址: https://gitcode.com/gh_mirrors/mm/mmdeploy

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

施刚爽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值