LLamaTuner 安装与配置指南

LLamaTuner 安装与配置指南

LLamaTuner Easy and Efficient Finetuning LLMs. (Supported LLama, LLama2, LLama3, Qwen, Baichuan, GLM , Falcon) 大模型高效量化训练+部署. LLamaTuner 项目地址: https://gitcode.com/gh_mirrors/ll/LLamaTuner

1. 项目基础介绍

LLamaTuner 是一个高效、灵活且功能齐全的开源工具包,用于 fine-tuning 大型语言模型(LLM)。它支持多种模型,包括 LLama 系列、Qwen、Baichuan 等,并且提供了多种训练算法,如 QLoRA、LoRA 和全参数 fine-tune。此项目主要使用 Python 编程语言。

2. 关键技术和框架

  • Python:作为主要的编程语言。
  • PyTorch:深度学习框架,用于构建和训练模型。
  • Transformers:由 Hugging Face 开发的库,提供了大量的预训练模型和转换器。
  • PEFT:用于模型参数高效调整的库。
  • DeepSpeed:微软开发的优化库,用于加速模型训练。
  • FlashAttention:用于提高训练吞吐量的高性能注意力机制。

3. 安装和配置准备工作

在开始安装之前,请确保您的系统满足以下要求:

  • Python:版本 3.8 或更高。
  • CUDA:版本 11.6 或更高(用于 GPU 加速)。
  • pip:Python 包管理器。

详细安装步骤

  1. 克隆项目仓库

    在命令行中执行以下命令,克隆 LLamaTuner 项目:

    git clone https://github.com/jianzhnie/LLamaTuner.git
    cd LLamaTuner
    
  2. 安装依赖项

    使用 pip 安装项目所需的依赖项:

    pip install -r requirements.txt
    

    如果您需要使用特定的 Python 版本,可以通过创建虚拟环境来管理依赖项。

  3. 配置环境变量

    根据您的系统配置环境变量,确保 Python 和 CUDA 能够正确使用。

  4. 运行示例脚本

    项目中包含了多个脚本,用于不同的训练任务。例如,运行以下命令进行全参数 fine-tune:

    python train_full.py
    

    或者使用 Lora 进行 fine-tune:

    python train_lora.py
    

    又或者使用 QLora 进行 fine-tune:

    python train_qlora.py
    

请按照上述步骤操作,您应该能够成功安装和配置 LLamaTuner 项目,并开始进行模型的 fine-tuning。如果在安装或配置过程中遇到任何问题,请查阅项目的官方文档或向社区寻求帮助。

LLamaTuner Easy and Efficient Finetuning LLMs. (Supported LLama, LLama2, LLama3, Qwen, Baichuan, GLM , Falcon) 大模型高效量化训练+部署. LLamaTuner 项目地址: https://gitcode.com/gh_mirrors/ll/LLamaTuner

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值