MotionGS: 探索显式运动引导的变形3D高斯泼洒

MotionGS: 探索显式运动引导的变形3D高斯泼洒

MotionGS [NeurIPS 2024] MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting MotionGS 项目地址: https://gitcode.com/gh_mirrors/mo/MotionGS

1. 项目介绍

MotionGS 是一个开源项目,它通过显式运动引导来探索变形3D高斯泼洒。该项目基于多个先进技术,如 Deformable3DGS、GaussianFlow 等,旨在通过优化相机姿态和使用深度与光流信息,提高3D渲染的质量和效率。适用于动态场景的渲染和视觉效果制作。

2. 项目快速启动

环境准备

首先,您需要克隆这个仓库并安装所需的依赖:

git clone git@github.com:RuijieZhu94/MotionGS.git --recursive
cd MotionGS
conda create -n motiongs python=3.7
conda activate motiongs

安装PyTorch

pip install torch==1.13.1+cu116 torchvision==0.14.1+cu116 --extra-index-url https://download.pytorch.org/whl/cu116

安装依赖

pip install -r requirements.txt

训练模型

以下是训练模型的示例命令:

NeRF-DS 数据集

expname=NeRF-DS
scenename=as_novel_view
mkdir -p output/$expname/$scenename
python train.py -s data/NeRF-DS/$scenename -m output/$expname/$scenename --eval --use_depth_and_flow --optimize_pose

HyperNeRF 数据集

expname=HyperNerf
scenename=broom2
mkdir -p output/$expname/$scenename
python train.py -s data/hypernerf/vrig/$scenename -m output/$expname/$scenename --scene_format nerfies --eval --use_depth_and_flow --optimize_pose

DyNeRF 数据集

expname=dynerf
scenename=flame_steak
mkdir -p output/$expname/$scenename
python train.py -s data/dynerf/$scenename -m output/$expname/$scenename --scene_format plenopticVideo --resolution 4 --dataloader --eval --use_depth_and_flow

3. 应用案例和最佳实践

渲染模式

项目支持多种渲染模式,以下是一些示例:

  • render: 渲染所有测试图像
  • time: 时间插值任务,适用于 D-NeRF 数据集
  • all: 时间和视图合成任务,适用于 D-NeRF 数据集
  • view: 视图合成任务,适用于 D-NeRF 数据集
  • original: 时间和视图合成任务,适用于真实世界数据集

评估

python render.py -m output/exp-name --mode render
python metrics.py -m output/exp-name

4. 典型生态项目

MotionGS 可以与多个开源项目结合使用,例如 Deformable3DGS、GaussianFlow、MonoGS 等,以实现更丰富的功能和效果。通过这些项目的协同工作,可以大大提升动态3D渲染的性能和应用范围。

MotionGS [NeurIPS 2024] MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting MotionGS 项目地址: https://gitcode.com/gh_mirrors/mo/MotionGS

identity 身份认证 购VIP最低享 7 折! triangle vip 30元优惠券将在 04:24:36 后过期 去使用 triangle 数据可视化是将复杂的数据集通过图表、图像等视觉元素进行呈现,以便于人们更容易地理解和解读数据。在“数据可视化期末课设~学生成绩可视化分析.zip”这个压缩包中,我们可以看到一系列与数据可视化相关的资源,包括Jupyter代码、HTML图片、答辩PPT以及Word文档,这些内容涵盖了数据可视化的基础到高级应用,适合于完成一个全面的期末课程设计项目。 Jupyter代码是使用Python编程语言进行数据处理和可视化的主要工具。在这个项目中,学生可能使用了pandas库来加载和清洗数据,可能涉及到的数据处理步骤包括去除重复值、处理缺失值以及数据类型转换等。接着,他们可能使用matplotlib或seaborn库来创建各种图表,如直方图、散点图、箱线图等,以展示学生成绩的分布、对比和趋势。此外,更高级的可视化库如plotly或bokeh可能也被用来实现交互图表,增加用户对数据的理解深度。 保存的HTML图片是Jupyter Notebook的输出结果,它展示了代码运行后的可视化效果。这些图片可以直观地揭示学生成绩的统计特征,例如平均分、标准差、最高分和最低分等。通过颜色编码或者图例,我们可以识别出不同科目或者不同班级的表现,帮助分析教学质量和学生学习情况。 答辩PPT则可能包含项目的概述、目的、方法、结果和结论。在PPT中,学生可能会详细阐述他们选择特定可视化方法的理由,如何解读图表,以及从数据中得出的洞察。此外,PPT的制作也是展示其表达和沟通能力的重要部分,要求清晰、有逻辑地组织信息。 Word文档可能是项目报告,详细记录了整个过程,包括数据来源、预处理步骤、使用的可视化技术、分析结果以及可能遇到的问题和解决方案。报告中的数据分析部分会详细解释图表背后的含义,例如通过对比不同学科的分数分布,找出哪些科目可能存在困难,或者分析成绩与特定因素(如性别、年级等)的关系。 这个压缩包提供了完整的数据可视化项目实例,涉及了数据获取、处理、可视化和解释的一系列步骤,对于学习和掌握数据可视化技能非常有价值。通过这样的练习,学生不仅能够提高编程技巧,还能培养数据驱动思维和问题解决能力,为未来从事数据分析或相关领域的工作打下坚实的基础。
《餐馆点餐管理系统——基于Java和MySQL的课程设计解析》 在信息技术日益发达的今天,餐饮行业的数字化管理已经成为一种趋势。本次课程设计的主题是“餐馆点餐管理系统”,它结合了编程语言Java和数据库管理系统MySQL,旨在帮助初学者理解如何构建一个实际的、具有基本功能的餐饮管理软件。下面,我们将深入探讨这个系统的实现细节及其所涉及的关键知识点。 我们要关注的是数据库设计。在“res_db.sql”文件中,我们可以看到数据库的结构,可能包括菜品表、订单表、顾客信息表等。在MySQL中,我们需要创建这些表格并定义相应的字段,如菜品ID、名称、价格、库存等。此外,还要设置主键、外键来保证数据的一致性和完整性。例如,菜品ID作为主键,确保每个菜品的唯一性;订单表中的顾客ID和菜品ID则作为外键,与顾客信息表和菜品表关联,形成数据间的联系。 接下来,我们来看Java部分。在这个系统中,Java主要负责前端界面的展示和后端逻辑的处理。使用Java Swing或JavaFX库可以创建用户友好的图形用户界面(GUI),让顾客能够方便地浏览菜单、下单。同时,Java还负责与MySQL数据库进行交互,通过JDBC(Java Database Connectivity)API实现数据的增删查改操作。在程序中,我们需要编写SQL语句,比如INSERT用于添加新的菜品信息,SELECT用于查询所有菜品,UPDATE用于更新菜品的价格,DELETE用于删除不再提供的菜品。 在系统设计中,我们还需要考虑一些关键功能的实现。例如,“新增菜品和价格”的功能,需要用户输入菜品信息,然后通过Java程序将这些信息存储到数据库中。在示所有菜品的功能上,程序需要从数据库获取所有菜品数据,然后在界面上动态生成列表或者表格展示。同时,为了提高用户体验,可能还需要实现搜索和排序功能,允许用户根据菜品名称或价格进行筛选。 另外,安全性也是系统设计的重要一环。在连接数据库时,要避免SQL注入攻击,可以通过预编译的PreparedStatement对象来执行SQL命令。对于用户输入的数据,需要进行验证和过滤,防止非法字符和异常值。 这个“餐馆点餐管理系统”项目涵盖了Java编程、数据库设计与管理、用户界面设计等多个方面,是一个很好的学习实践平台。通过这个项目,初学者不仅可以提升编程技能,还能对数据库管理和软件工程有更深入的理解。在实际开发过程中,还会遇到调试、测试、优化等挑战,这些都是成长为专业开发者不可或缺的经验积累
标题中的“基于zigbee的温湿度检测的QT的C++实时曲线示源码”涉及到的是一个集成物联网技术、用户界面设计以及数据可视化于一体的项目。这个项目利用Zigbee无线通信技术来收集环境中的温湿度数据,并通过Qt框架,用C++编程语言实现了一个实时曲线示的界面。 我们要理解Zigbee技术。Zigbee是一种低功耗、低数据速率、短距离的无线通信协议,常用于传感器网络和物联网设备中。它基于IEEE 802.15.4标准,适合构建大规模的自组织网络,非常适合温湿度监测这类分布环境监控系统。 接着,我们探讨QT框架。QT是一个跨平台的C++应用程序开发框架,包含了大量的库,支持图形用户界面(GUI)的创建,同时也提供了非GUI功能,如网络编程、数据库访问等。在本项目中,QT作为前端开发工具,负责接收并展示由Zigbee设备发送的温湿度数据。 C++是被选择的编程语言,它是一种强类型、静态类型的面向对象语言,具有高效性、灵活性和广泛的应用范围。在这里,C++用于编写后台逻辑,处理Zigbee接收到的数据,并驱动QT界面更新实时曲线。 实时曲线示是项目的核心部分。在C++中,这通常需要使用QT的图形库,如QPainter和QGraphicsView,来绘制曲线。开发者会根据接收到的温湿度值动态更新曲线,从而实现数据的实时可视化。此外,可能还需要使用线程或定时器来确保数据获取和界面刷新的异步执行,保证程序的流畅运行。 标签“QT实时曲线”进一步强调了项目的重点,即利用QT实现数据的实时图形化展示。在C++中,这涉及到数据结构的使用(如队列或数组)来存储历史数据,以及数学方法来计算曲线的坐标点。 至于压缩包中的“realtimedemo”文件,很可能是一个包含了该项目源代码和资源文件的示例或测试应用。开发者可以通过解压并编译这个文件来查看和学习项目的具体实现。 总结来说,这个项目结合了Zigbee通信、QT GUI开发和C++编程,旨在构建一个能够实时示温湿度变化的监测系统,对物联网环境监控、室内舒适度管理等领域有实际应用价值。通过这个项目,开发者可以深入学习Zigbee网络通信、QT界面设计以及C++的实时数据处理和图形化展示技术。
内容概要:本文档详细介绍了使用Google Earth Engine(GEE)进行苏丹地区作物休耕监测的Python脚本。首先,初始化了必要的库和参数设置,包括研究区域(如喀土穆、杰济拉州)的边界数据集以及时间范围、传感器选择(MODIS或Sentinel-2)。接下来,定义了一系列预处理函数用于筛选有效图像、计算归一化差值植被指数(NDVI),并生成时间序列数据。然后,基于这些时间序列数据,分别进行了时序异常分析与空间异常分析,以确定每个季节内的休耕地块。最后,结合两种分析结果得出最终的休耕地图,并提供了自动校准参数的功能,确保模型准确性。此外,还提供了将结果导出为GeoTIFF文件的功能。 适合人群:具有遥感和地理信息系统基础知识的研究人员和技术人员,特别是那些从事农业监测、土地利用变化分析的专业人士。 使用场景及目标:①通过时序和空间异常分析识别作物休耕区域;②为政策制定者提供科学依据,帮助评估农业生产状况;③支持学术研究,如探讨气候变化对农业的影响;④适用于需要精确监测大面积农田休耕情况的应用场合。 阅读建议:由于涉及较多的技术细节,建议读者先熟悉Google Earth Engine平台的基本操作及Python编程语言,重点理解NDVI计算方法、异常检测算法以及参数调整的意义。同时,可以根据自身需求调整输入参数,如研究区域、时间跨度、传感器类型等,以便更好地应用于具体项目中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尤琦珺Bess

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值