Person Image Synthesis via Denoising Diffusion Model (PIDM) 使用教程
1. 项目介绍
PIDM 是一个基于去噪扩散模型的开源项目,用于实现人物图像合成。该项目由ankanbhunia开发,并在CVPR 2023上发表。PIDM通过使用先进的去噪扩散模型,能够根据给定的姿势和源图像生成高质量的人物图像。
2. 项目快速启动
环境准备
-
安装 Conda,并创建一个名为
PIDM
的虚拟环境:conda create -n PIDM python=3.7 conda activate PIDM
-
安装所需的依赖库:
conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia pip install -r requirements.txt
数据准备
-
下载 DeepFashion 数据集的
img_highres.zip
文件,解压后重命名文件夹为img
并放置在./dataset/deepfashion
目录下。 -
下载训练和测试图像对以及关键点姿势文件,解压后放置在
./dataset/deepfashion
目录下。 -
运行以下代码将图像保存为 lmdb 数据集格式:
python data/prepare_data.py --root ./dataset/deepfashion --out ./dataset/deepfashion
模型训练
使用以下命令进行模型训练:
python -m torch.distributed.launch --nproc_per_node=8 --master_port 48949 train.py --dataset_path "./dataset/deepfashion" --batch_size 8 --exp_name "pidm_deepfashion"
3. 应用案例和最佳实践
人像生成
-
下载预训练模型并放置在
checkpoints
文件夹中。 -
使用以下代码进行姿态控制的人像生成:
from predict import Predictor obj = Predictor() obj.predict_pose(image=<PATH_OF_SOURCE_IMAGE>, sample_algorithm='ddim', num_poses=4, nsteps=50)
-
使用以下代码进行外观控制的人像生成:
src = <PATH_OF_SOURCE_IMAGE> ref_img = <PATH_OF_REF_IMAGE> ref_mask = <PATH_OF_REF_MASK> ref_pose = <PATH_OF_REF_POSE> obj.predict_appearance(image=src, ref_img=ref_img, ref_mask=ref_mask, ref_pose=ref_pose, sample_algorithm='ddim', nsteps=50)
模型评估
在训练过程中,可以通过模型生成的人物图像与地面真实图像进行对比,以评估模型性能。
4. 典型生态项目
PIDM 可以应用于多种场景,包括但不限于:
- 虚拟现实和增强现实中的角色创建。
- 游戏开发中的人物定制。
- 个性化图像编辑和变换。
以上是PIDM的基本使用教程,希望对您有所帮助。如果您有任何问题或需要进一步的帮助,请随时提问。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考