Person Image Synthesis via Denoising Diffusion Model (PIDM) 使用教程

Person Image Synthesis via Denoising Diffusion Model (PIDM) 使用教程

PIDM Person Image Synthesis via Denoising Diffusion Model (CVPR 2023) PIDM 项目地址: https://gitcode.com/gh_mirrors/pi/PIDM

1. 项目介绍

PIDM 是一个基于去噪扩散模型的开源项目,用于实现人物图像合成。该项目由ankanbhunia开发,并在CVPR 2023上发表。PIDM通过使用先进的去噪扩散模型,能够根据给定的姿势和源图像生成高质量的人物图像。

2. 项目快速启动

环境准备

  1. 安装 Conda,并创建一个名为 PIDM 的虚拟环境:

    conda create -n PIDM python=3.7
    conda activate PIDM
    
  2. 安装所需的依赖库:

    conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
    pip install -r requirements.txt
    

数据准备

  1. 下载 DeepFashion 数据集的 img_highres.zip 文件,解压后重命名文件夹为 img 并放置在 ./dataset/deepfashion 目录下。

  2. 下载训练和测试图像对以及关键点姿势文件,解压后放置在 ./dataset/deepfashion 目录下。

  3. 运行以下代码将图像保存为 lmdb 数据集格式:

    python data/prepare_data.py --root ./dataset/deepfashion --out ./dataset/deepfashion
    

模型训练

使用以下命令进行模型训练:

python -m torch.distributed.launch --nproc_per_node=8 --master_port 48949 train.py --dataset_path "./dataset/deepfashion" --batch_size 8 --exp_name "pidm_deepfashion"

3. 应用案例和最佳实践

人像生成

  1. 下载预训练模型并放置在 checkpoints 文件夹中。

  2. 使用以下代码进行姿态控制的人像生成:

    from predict import Predictor
    obj = Predictor()
    obj.predict_pose(image=<PATH_OF_SOURCE_IMAGE>, sample_algorithm='ddim', num_poses=4, nsteps=50)
    
  3. 使用以下代码进行外观控制的人像生成:

    src = <PATH_OF_SOURCE_IMAGE>
    ref_img = <PATH_OF_REF_IMAGE>
    ref_mask = <PATH_OF_REF_MASK>
    ref_pose = <PATH_OF_REF_POSE>
    obj.predict_appearance(image=src, ref_img=ref_img, ref_mask=ref_mask, ref_pose=ref_pose, sample_algorithm='ddim', nsteps=50)
    

模型评估

在训练过程中,可以通过模型生成的人物图像与地面真实图像进行对比,以评估模型性能。

4. 典型生态项目

PIDM 可以应用于多种场景,包括但不限于:

  • 虚拟现实和增强现实中的角色创建。
  • 游戏开发中的人物定制。
  • 个性化图像编辑和变换。

以上是PIDM的基本使用教程,希望对您有所帮助。如果您有任何问题或需要进一步的帮助,请随时提问。

PIDM Person Image Synthesis via Denoising Diffusion Model (CVPR 2023) PIDM 项目地址: https://gitcode.com/gh_mirrors/pi/PIDM

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

平奇群Derek

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值