Cellpose项目中的模型使用与共享指南

Cellpose项目中的模型使用与共享指南

cellpose cellpose 项目地址: https://gitcode.com/gh_mirrors/ce/cellpose

模型基础使用

Cellpose项目提供了一个强大的细胞分割模型,可以通过简单的Python代码导入和使用:

from cellpose import models

模型权重文件会自动下载到指定的models.MODELS_DIR目录中。这个预训练模型是在直径范围7.5到120像素的图像上训练的。如果你的图像细胞直径更大,可以通过设置diameter参数来调整,例如diameter=60会使图像相对于30像素的基准进行2倍下采样。

用户自定义模型

Cellpose不仅提供预训练模型,还支持用户使用自己的数据进行模型训练:

  1. 模型训练特点:默认情况下,模型训练不会调整图像和ROI的大小,因此测试图像的直径分布应与训练数据相似。

  2. 模型加载方式

    • 在Notebook中使用:
      models.CellposeModel(pretrained_model='name_in_gui')
      
      models.CellposeModel(pretrained_model='/full/path/to/model')
      
    • 在命令行中使用:
      python -m cellpose --pretrained_model name_in_gui
      
      python -m cellpose --pretrained_model /full/path/to/model
      
  3. 添加自定义模型

    • 通过GUI在"Models"菜单中添加
    • 使用命令行:
      python -m cellpose --add_model /full/path/to/model
      

通过BioImage.IO平台共享模型

BioImage.IO是一个专门为生物图像分析设计的AI模型、数据集和工具共享平台。Cellpose模型可以方便地通过这个平台进行共享和获取。

查找已有模型

  1. 在BioImage.IO平台上搜索cellpose标签
  2. 点击模型卡片查看详情
  3. 点击下载图标
  4. 选择"Download by Weight Format" → "Pytorch State Dict"格式下载

共享自定义模型

将训练好的Cellpose模型共享到BioImage.IO平台需要以下步骤:

  1. 准备工作

    • 训练并验证你的Cellpose模型
    • 确保安装了必要的依赖包:
      python -m pip install 'cellpose[bioimageio]'
      
      python -m pip install 'cellpose[all]'
      
  2. 模型导出: 使用export.py脚本将模型导出为BioImage.IO格式。导出时需要提供:

    • 模型文件路径
    • README.md文件路径
    • 封面图片路径
    • 简短描述
    • 许可证类型(如MIT)
    • 相关代码库链接
    • 作者信息和引用说明
    • 必要的标签(必须包含cellpose2d3d)
  3. 上传模型

    • 访问BioImage.IO平台
    • 点击"Upload"按钮
    • 按照指引完成模型上传
  4. 更新已有模型

    • 指定模型ID和图标
    • 记得更新版本号

最佳实践建议

  1. 模型训练:确保训练数据的多样性,包括不同大小、形状和对比度的细胞图像。

  2. 参数调整:根据实际图像特点调整diameter参数,这对分割结果有很大影响。

  3. 模型共享:在BioImage.IO上共享模型时,提供详细的文档和示例,帮助其他用户理解模型的适用场景。

  4. 版本控制:每次更新模型时,务必增加版本号并记录变更内容。

通过合理使用Cellpose的模型功能,研究人员可以快速实现高质量的细胞分割,并通过共享模型促进科学研究的可重复性和协作性。

cellpose cellpose 项目地址: https://gitcode.com/gh_mirrors/ce/cellpose

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高慈鹃Faye

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值