Cellpose项目中的模型使用与共享指南
cellpose 项目地址: https://gitcode.com/gh_mirrors/ce/cellpose
模型基础使用
Cellpose项目提供了一个强大的细胞分割模型,可以通过简单的Python代码导入和使用:
from cellpose import models
模型权重文件会自动下载到指定的models.MODELS_DIR
目录中。这个预训练模型是在直径范围7.5到120像素的图像上训练的。如果你的图像细胞直径更大,可以通过设置diameter
参数来调整,例如diameter=60
会使图像相对于30像素的基准进行2倍下采样。
用户自定义模型
Cellpose不仅提供预训练模型,还支持用户使用自己的数据进行模型训练:
-
模型训练特点:默认情况下,模型训练不会调整图像和ROI的大小,因此测试图像的直径分布应与训练数据相似。
-
模型加载方式:
- 在Notebook中使用:
或models.CellposeModel(pretrained_model='name_in_gui')
models.CellposeModel(pretrained_model='/full/path/to/model')
- 在命令行中使用:
或python -m cellpose --pretrained_model name_in_gui
python -m cellpose --pretrained_model /full/path/to/model
- 在Notebook中使用:
-
添加自定义模型:
- 通过GUI在"Models"菜单中添加
- 使用命令行:
python -m cellpose --add_model /full/path/to/model
通过BioImage.IO平台共享模型
BioImage.IO是一个专门为生物图像分析设计的AI模型、数据集和工具共享平台。Cellpose模型可以方便地通过这个平台进行共享和获取。
查找已有模型
- 在BioImage.IO平台上搜索
cellpose
标签 - 点击模型卡片查看详情
- 点击下载图标
- 选择"Download by Weight Format" → "Pytorch State Dict"格式下载
共享自定义模型
将训练好的Cellpose模型共享到BioImage.IO平台需要以下步骤:
-
准备工作:
- 训练并验证你的Cellpose模型
- 确保安装了必要的依赖包:
或python -m pip install 'cellpose[bioimageio]'
python -m pip install 'cellpose[all]'
-
模型导出: 使用
export.py
脚本将模型导出为BioImage.IO格式。导出时需要提供:- 模型文件路径
- README.md文件路径
- 封面图片路径
- 简短描述
- 许可证类型(如MIT)
- 相关代码库链接
- 作者信息和引用说明
- 必要的标签(必须包含
cellpose
、2d
和3d
)
-
上传模型:
- 访问BioImage.IO平台
- 点击"Upload"按钮
- 按照指引完成模型上传
-
更新已有模型:
- 指定模型ID和图标
- 记得更新版本号
最佳实践建议
-
模型训练:确保训练数据的多样性,包括不同大小、形状和对比度的细胞图像。
-
参数调整:根据实际图像特点调整
diameter
参数,这对分割结果有很大影响。 -
模型共享:在BioImage.IO上共享模型时,提供详细的文档和示例,帮助其他用户理解模型的适用场景。
-
版本控制:每次更新模型时,务必增加版本号并记录变更内容。
通过合理使用Cellpose的模型功能,研究人员可以快速实现高质量的细胞分割,并通过共享模型促进科学研究的可重复性和协作性。
cellpose 项目地址: https://gitcode.com/gh_mirrors/ce/cellpose
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考