PySMaTch 使用与配置指南
1. 项目目录结构及介绍
PySMaTch 是一个用于倾向得分匹配(Propensity Score Matching, PSM)的 Python 包,其目的是解决观察研究中的选择偏差问题。以下是 PySMaTch 项目的目录结构及各部分的简要介绍:
pysmatch/
├── .github/ # GitHub 工作流和配置文件
├── Example_files/ # 示例文件和笔记本
├── build/ # 构建目录
├── lib/ # 包的源代码
│ └── pysmatch/ # PySMaTch 包的主目录
├── misc/ # 杂项目录
├── test/ # 测试目录
├── .gitignore # Git 忽略文件
├── Example.ipynb # 示例 Jupyter 笔记本
├── Example.py # 示例 Python 脚本
├── LICENSE # 项目许可证文件
├── README.md # 项目自述文件
├── README_CHINESE.md # 项目自述文件(中文)
├── coverage.xml # 测试覆盖率报告
├── pyproject.toml # 项目配置文件
├── pytest.ini # pytest 配置文件
├── requirements.txt # 项目依赖文件
├── setup.cfg # 设置配置文件
└── setup.py # 包设置脚本
2. 项目的启动文件介绍
PySMaTch 的启动文件主要是 lib/pysmatch/__init__.py
,该文件定义了包的接口,使得用户可以导入和使用 PySMaTch 提供的功能。以下是启动文件的基本内容:
# __init__.py
from .matcher import Matcher
__version__ = '0.1.0' # 项目版本号
用户可以通过以下方式导入 Matcher 类并使用:
from pysmatch import Matcher
3. 项目的配置文件介绍
PySMaTch 的配置文件主要集中在项目的根目录中,以下是主要的配置文件及其介绍:
pyproject.toml
:这是现代 Python 包的配置文件,用于定义包的元数据和依赖项。
[build-system]
requires = ["setuptools", "wheel"]
[tool.setuptools]
packages = find:
entry_points = []
requirements.txt
:该文件列出了项目运行所需的依赖库,用户可以通过pip install -r requirements.txt
来安装所有依赖。
pandas
numpy
scikit-learn
catboost
optuna
imblearn
pytest.ini
:pytest 的配置文件,用于定义测试相关的配置选项。
[pytest]
addopts = -v
通过正确配置和使用这些文件,用户可以轻松安装和使用 PySMaTch,并执行单元测试以确保包的正确性。