Fortran 与 Python matplotlib 绘图工具的集成使用教程

Fortran 与 Python matplotlib 绘图工具的集成使用教程

pyplot-fortran For generating plots from Fortran using Python's matplotlib.pyplot 📈 pyplot-fortran 项目地址: https://gitcode.com/gh_mirrors/py/pyplot-fortran

1. 项目的目录结构及介绍

pyplot-fortran 项目是一个简单的模块,旨在使用 Python 的 matplotlib.pyplot 库从 Fortran 代码生成图形。以下是项目的目录结构及其组件的简要介绍:

pyplot-fortran/
├── .github/          # GitHub 工作流程和配置文件
│   └── workflows/
├── media/            # 可能包含示例图形和其他媒体文件
├── src/              # 源代码目录,包含 Fortran 模块和程序
├── test/             # 单元测试代码
├── .gitignore        # 指定 Git 忽略的文件
├── LICENSE           # 项目许可证文件
├── README.md         # 项目说明文件
├── codecov.yml       # CodeCov 配置文件
├── ford.md           # FORD 文档生成文件
├── fpm.toml          # Fortran 包管理器配置文件
└── pyplot-fortran.code-workspace # VS Code 工作区配置文件

2. 项目的启动文件介绍

项目的启动主要是通过 Fortran 程序调用 Python 脚本来实现的。以下是一个简单的 Fortran 程序示例,该程序生成一个正弦函数的图形,并将结果保存为 .png 文件:

program test
  use, intrinsic :: iso_fortran_env, only: wp => real64
  use pyplot_module
  implicit none
  real(wp), dimension(100) :: x, sx
  type(pyplot) :: plt
  integer :: i

  ! 生成一些数据
  x = [(real(i, wp), i = 0, size(x) - 1)] / 5.0_wp
  sx = sin(x)

  ! 绘制图形
  call plt%initialize(grid=.true., xlabel='angle (rad)', title='Plot of $\sin(x)$', legend=.true.)
  call plt%add_plot(x, sx, label='$\sin(x)$', linestyle='b-o', markersize=5, linewidth=2)
  call plt%savefig('sinx.png', pyfile='sinx.py')
end program test

在这个例子中,plt%initialize 初始化绘图配置,plt%add_plot 添加数据到图中,而 plt%savefig 则保存图形和生成相应的 Python 脚本。

3. 项目的配置文件介绍

项目的配置文件主要是 fpm.toml,这是 Fortran 包管理器(Fortran Package Manager)的配置文件。fpm.toml 文件定义了项目依赖、构建设置和测试命令。

以下是一个 fpm.toml 文件的示例:

[package]
name = "pyplot-fortran"
version = "0.1.0"
authors = ["Your Name <youremail@example.com>"]

[dependencies]
# 添加项目依赖

[build]
commands = ["gfortran -o pyplot-fortran src/*.f90"]

[test]
commands = ["./pyplot-fortran"]

在这个配置文件中,[package] 部分定义了项目的名称和版本信息,[dependencies] 部分可以用来添加项目依赖,而 [build][test] 部分则定义了构建和测试项目时所需的命令。在实际使用中,用户可能需要根据自己的需求和编译器环境调整这些配置。

pyplot-fortran For generating plots from Fortran using Python's matplotlib.pyplot 📈 pyplot-fortran 项目地址: https://gitcode.com/gh_mirrors/py/pyplot-fortran

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

飞思卡尔智能车竞赛是一项备受关注的科技赛事,旨在激发学生的创新和实践能力,尤其是在嵌入式系统、自动控制和机器人技术等关键领域。其中的“电磁组”要求参赛队伍设计并搭建一辆能够自主导航的智能车,通过电磁感应线圈感知赛道路径。本压缩包文件提供了一套完整的电磁组智能车程序,这是一套经过实战验证的代码,曾在校级比赛中获得第二名的优异成绩。 该程序的核心内容可能涉及以下关键知识点: 传感器处理:文件名“4sensor”表明车辆配备了四个传感器,用于获取环境信息。这些传感器很可能是电磁感应传感器,用于探测赛道上的导电线圈。通过分析传感器信号的变化,车辆能够判断自身的行驶方向和位置。 数据采集滤波:在实际运行中,传感器读数可能受到噪声干扰,因此需要进行数据滤波以提高精度。常见的滤波算法包括低通滤波、高斯滤波和滑动平均滤波等,以确保车辆对赛道的判断准确无误。 路径规划:车辆需要根据传感器输入实时规划行驶路径。这可能涉及PID(比例-积分-微分)控制、模糊逻辑控制或其他现代控制理论方法,从而确保车辆能够稳定且快速地沿赛道行驶。 电机控制:智能车的驱动通常依赖于直流电机或无刷电机,电机控制是关键环节。程序中可能包含电机速度和方向的调节算法,如PWM(脉宽调制)控制,以实现精准的运动控制。 嵌入式系统编程:飞思卡尔智能车的控制器可能基于飞思卡尔微处理器(例如MC9S12系列)。编程语言通常为C或C++,需要掌握微控制器的中断系统、定时器和串行通信等功能。 软件架构:智能车软件通常具有清晰的架构,包括任务调度、中断服务程序和主循环等。理解和优化这一架构对于提升整体性能至关重要。 调试优化:程序能够在比赛中取得好成绩,说明经过了反复的调试和优化。这可能涉及代码效率提升、故障排查以及性能瓶颈的识别和解决。 团队协作版本控制:在项目开发过程中,团队协作和版本控制工具(如Git)的应用不可或缺,能够保
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

石淞畅Oprah

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值