lessnmore:个人化URL缩短工具,轻松管理短链接

lessnmore:个人化URL缩短工具,轻松管理短链接

lessnmore A self-hosted PHP-based URL shortener with stats and custom urls. Alan Hogan’s fork of Shaun Inman’s Lessn. lessnmore 项目地址: https://gitcode.com/gh_mirrors/le/lessnmore

在互联网的世界里,长串的URL常常令人头疼,不仅难以记忆,而且不便于分享。lessnmore是一款免费且开源的个人URL缩短器,它不仅可以为用户提供自定义短URL的能力,还具有许多独特的功能和优势。

项目介绍

lessnmore项目旨在提供一个简单、易用的个人URL缩短解决方案。用户可以创建自定义的短URL,通过API或网页界面进行管理,支持多种自动缩短模式,并能够避免生成具有误导性的或不当的URL。

项目技术分析

lessnmore基于PHP语言开发,支持多种数据库系统,包括MySQL、PostgreSQL和SQLite。它遵循URL缩短器的最佳实践和标准,如使用rel-shortlink标签,并且能够根据服务器的响应协议返回http:https:的URL。

项目采用了PDO(PHP Data Objects)扩展进行数据库操作,确保了数据库连接的安全性和灵活性。在字符集的选择上,lessnmore允许用户动态更改,以最大限度地减少无效的短URL,同时保持插入算法的高效性。

项目及技术应用场景

lessnmore适合个人或小型团队使用,尤其在以下场景中表现出色:

  • 社交媒体分享:在Twitter、Facebook等社交媒体平台分享内容时,使用短链接可以提高链接的可读性和吸引力。
  • 电子邮件营销:在邮件中包含简短的追踪链接,便于分析点击率和用户行为。
  • 个人博客或网站:为长篇博客文章或深层次页面提供简洁的访问路径。

项目特点

lessnmore具有以下显著特点:

  1. 自定义短URL:用户可以指定自己想要的短链接,而不是由系统随机生成。
  2. 支持多种数据库:与MySQL、PostgreSQL和SQLite兼容,增加了部署的灵活性。
  3. 安全性:通过HTTP_ONLY设置Cookies,防止JavaScript窃取认证信息。
  4. 易用性:提供简单易用的API和网页界面,以及便捷的迁移脚本。
  5. 智能化:支持避免使用类似字符,防止生成误导性URL,并设有禁用词汇列表,避免生成不当的URL。
  6. 灵活性:允许用户自定义缩短模式,包括大小写混合选项。
  7. 维护性:lessnmore提供了详细的安装指南和升级路径,确保用户可以轻松更新到最新版本。

lessnmore是一个功能全面且易于扩展的个人URL缩短器,不仅满足了基本的URL缩短需求,还提供了许多高级功能和最佳实践的支持。无论是个人博主还是小型企业,都可以从中受益,提升工作效率和用户体验。如果你正在寻找一个可靠且灵活的URL缩短解决方案,lessnmore绝对值得一试。

lessnmore A self-hosted PHP-based URL shortener with stats and custom urls. Alan Hogan’s fork of Shaun Inman’s Lessn. lessnmore 项目地址: https://gitcode.com/gh_mirrors/le/lessnmore

动物目标检测数据集 一、基础信息 数据集名称:动物目标检测数据集 图片数量: - 训练集:9,134张图片 - 验证集:1,529张图片 - 测试集:1,519张图片 总计:12,182张图片 分类类别: Bear(熊)、Cat(猫)、Cattle(牛)、Chicken(鸡)、Deer(鹿)、Dog(狗)、Elephant(大象)、Horse(马)、Monkey(猴子)、Sheep(绵羊) 标注格式: YOLO格式,包含归一化坐标的边界框和数字编码类别标签,支持目标检测模型开发。 数据特性: 涵盖俯拍视角、地面视角等多角度动物影像,适用于复杂环境下的动物识别需求。 二、适用场景 农业智能监测: 支持畜牧管理系统开发,自动识别牲畜种类并统计数量,提升养殖场管理效率。 野生动物保护: 应用于自然保护区监控系统,实时检测特定动物物种,辅助生态研究和盗猎预警。 智能养殖设备: 为自动饲喂系统、健康监测设备等提供视觉识别能力,实现精准个体识别。 教育研究工具: 适用于动物行为学研究和计算机视觉教学,提供标准化的多物种检测数据集。 遥感图像分析: 支持航拍图像中的动物种群分布分析,适用于生态调查和栖息地研究。 三、数据集优势 多物种覆盖: 包含10类常见经济动物和野生动物,覆盖陆生哺乳动物与家禽类别,满足跨场景需求。 高密度标注: 支持单图多目标检测,部分样本包含重叠目标标注,模拟真实场景下的复杂检测需求。 数据平衡性: 经分层抽样保证各类别均衡分布,避免模型训练时的类别偏差问题。 工业级适用性: 标注数据兼容YOLO系列模型框架,支持快速迁移学习和生产环境部署。 场景多样性: 包含白天/夜间、近距离/远距离、单体/群体等多种拍摄条件,增强模型鲁棒性。
数据集介绍:农场与野生动物目标检测数据集 一、基础信息 数据集名称:农场与野生动物目标检测数据集 图片规模: - 训练集:13,154张图片 - 验证集:559张图片 - 测试集:92张图片 分类类别: - Cow(牛):农场核心牲畜,包含多种姿态和场景 - Deer(鹿):涵盖野外环境中的鹿类目标 - Sheep(羊):包含不同品种的绵羊和山羊 - Waterdeer(獐):稀有野生动物目标检测样本 标注格式: YOLO格式标准标注,含精确边界框坐标和类别标签 数据特征: 包含航拍、地面拍摄等多视角数据,适用于复杂环境下的目标检测任务 二、适用场景 智慧农业系统开发: 支持畜牧数量统计、牲畜行为监测等农业自动化管理应用 野生动物保护监测: 适用于自然保护区生物多样性监测系统的开发与优化 生态研究数据库构建: 为动物分布研究提供标准化视觉数据支撑 智能畜牧管理: 赋能养殖场自动化监控系统,实现牲畜健康状态追踪 多目标检测算法验证: 提供跨物种检测基准,支持算法鲁棒性测试 三、数据集优势 多场景覆盖能力: 整合农场环境与自然场景数据,包含光照变化、遮挡等真实场景 精确标注体系: - 经专业团队双重校验的YOLO格式标注 - 边界框精准匹配动物形态特征 数据多样性突出: - 包含静态、动态多种动物状态 - 涵盖个体与群体检测场景 任务适配性强: - 可直接应用于YOLO系列模型训练 - 支持从目标检测扩展到行为分析等衍生任务 生态研究价值: 特别包含獐等稀有物种样本,助力野生动物保护AI应用开发
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吉昀蓓

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值