MLX Engine 使用教程

MLX Engine 使用教程

mlx-engine 👾🍎 Apple MLX engine for LM Studio mlx-engine 项目地址: https://gitcode.com/gh_mirrors/ml/mlx-engine

1. 项目介绍

MLX Engine 是由 LM Studio 开发的一个开源项目,它基于 Apple MLX 推断引擎,为用户提供了一种高效的方式来处理大型语言模型(LLM)的文本生成和视觉模型的推理任务。MLX Engine 集成了多种功能,如结构化输出(Outlines)、视觉模型推理(Vision model inferencing)等,旨在简化机器学习工作流程。

2. 项目快速启动

环境准备

  • macOS 14.0 (Sonoma) 或更高版本
  • Python 3.11

使用 brew install python@3.11 安装 Python 3.11 不会影响您的默认 Python 设置。

克隆仓库

git clone https://github.com/lmstudio-ai/mlx-engine.git
cd mlx-engine

创建虚拟环境(可选)

python3.11 -m venv .venv
source .venv/bin/activate

安装依赖

pip install -U -r requirements.txt

文本模型演示

下载模型并运行演示脚本:

lms get mlx-community/Meta-Llama-3.1-8B-Instruct-4bit
python demo.py --model mlx-community/Meta-Llama-3.1-8B-Instruct-4bit

如果要使用自定义提示符,可以添加 --prompt 参数:

python demo.py --model mlx-community/Meta-Llama-3.1-8B-Instruct-4bit --prompt "你的问题或提示符"

视觉模型演示

运行视觉模型的演示脚本:

lms get mlx-community/pixtral-12b-4bit
python demo.py --model mlx-community/pixtral-12b-4bit --prompt "Compare these images" --images demo-data/chameleon.webp demo-data/toucan.jpeg

3. 应用案例和最佳实践

  • 文本生成: 使用 MLX Engine 中的文本生成模型,可以创建自动回复机器人、生成文章摘要、撰写代码等。
  • 图像识别: 利用视觉模型进行图像分类、目标检测等任务。

4. 典型生态项目

  • Outlines: 提供结构化输出,便于处理和解析大型语言模型的结果。
  • Vision Model Inferencing: 为视觉模型提供高效的推理能力。
  • Pre-commit Hooks: 用于维护代码质量,确保代码提交前符合一定的标准。

以上是 MLX Engine 的基本使用教程,希望对您有所帮助。

mlx-engine 👾🍎 Apple MLX engine for LM Studio mlx-engine 项目地址: https://gitcode.com/gh_mirrors/ml/mlx-engine

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

惠淼铖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值