Flink CDC Connectors 实战:MySQL 到 Doris 的实时数据同步
flink-cdc 项目地址: https://gitcode.com/gh_mirrors/fl/flink-cdc
前言
在现代数据架构中,实时数据同步已成为企业数据集成的重要需求。本文将详细介绍如何使用 Flink CDC Connectors 实现 MySQL 到 Doris 的实时数据同步,涵盖从环境准备到实际操作的完整流程。
技术背景
Flink CDC Connectors 是基于 Apache Flink 构建的变更数据捕获(CDC)工具,能够高效捕获数据库变更并实时同步到下游系统。Doris 作为一款高性能的 MPP 分析型数据库,非常适合作为实时数仓的存储层。
环境准备
1. 基础环境配置
首先需要准备以下基础环境:
- Flink Standalone 集群:推荐使用 Flink 1.20.1 版本
- Docker 环境:用于快速部署 MySQL 和 Doris 服务
2. Flink 集群配置
配置 Flink 集群时需要注意:
# 在 flink-conf.yaml 中添加
execution.checkpointing.interval: 3000
这个配置确保每3秒做一次checkpoint,保证数据同步的可靠性。
3. Docker 环境准备
对于 Doris 服务,需要特别注意内存映射配置:
sysctl -w vm.max_map_count=2000000
MacOS 用户需要额外步骤:
docker run -it --privileged --pid=host --name=change_count debian nsenter -t 1 -m -u -n -i sh
sysctl -w vm.max_map_count=2000000
exit
数据源配置
1. MySQL 数据准备
我们创建一个示例数据库 app_db
并添加三张表:
CREATE DATABASE app_db;
USE app_db;
-- 订单表
CREATE TABLE `orders` (
`id` INT NOT NULL,
`price` DECIMAL(10,2) NOT NULL,
PRIMARY KEY (`id`)
);
-- 发货表
CREATE TABLE `shipments` (
`id` INT NOT NULL,
`city` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);
-- 产品表
CREATE TABLE `products` (
`id` INT NOT NULL,
`product` VARCHAR(255) NOT NULL,
PRIMARY KEY (`id`)
);
2. Doris 数据库准备
在 Doris 中需要预先创建目标数据库:
CREATE DATABASE app_db;
同步任务配置
1. 配置文件详解
核心配置文件 mysql-to-doris.yaml
包含三个主要部分:
source:
type: mysql
hostname: localhost
port: 3306
username: root
password: 123456
tables: app_db.\.* # 正则匹配app_db下所有表
server-id: 5400-5404
server-time-zone: UTC
sink:
type: doris
fenodes: 127.0.0.1:8030 # Doris FE节点
username: root
password: ""
table.create.properties.light_schema_change: true # 启用轻量级schema变更
table.create.properties.replication_num: 1 # 副本数
pipeline:
name: Sync MySQL Database to Doris
parallelism: 2 # 并行度
2. 关键参数说明
light_schema_change
: 启用后支持自动同步表结构变更replication_num
: Doris 表副本数,测试环境可设为1tables
: 支持正则表达式匹配多表
任务提交与验证
1. 提交任务
使用以下命令提交同步任务:
bash bin/flink-cdc.sh mysql-to-doris.yaml
成功提交后会返回任务ID和描述信息。
2. 数据变更测试
验证同步功能时可以进行以下操作:
- 数据插入:
INSERT INTO app_db.orders (id, price) VALUES (3, 100.00);
- 表结构变更:
ALTER TABLE app_db.orders ADD amount varchar(100) NULL;
- 数据更新:
UPDATE app_db.orders SET price=100.00, amount=100.00 WHERE id=1;
- 数据删除:
DELETE FROM app_db.orders WHERE id=2;
每次操作后,在Doris中都能实时看到变更结果。
高级功能
1. 表路由功能
通过route配置可以实现表名映射:
route:
- source-table: app_db.orders
sink-table: ods_db.ods_orders
2. 分库分表合并
支持将多个分表合并到一个目标表:
route:
- source-table: app_db.order\.*
sink-table: ods_db.ods_orders
注意:当前版本不支持多分表中相同主键数据的合并。
环境清理
完成测试后,按顺序清理环境:
- 停止Docker容器:
docker-compose down
- 停止Flink集群:
./bin/stop-cluster.sh
总结
通过本文的实践,我们实现了MySQL到Doris的实时数据同步,包括:
- 全量数据初始化同步
- 增量变更实时捕获
- 表结构变更自动同步
- 分库分表合并功能
Flink CDC Connectors 提供了简单高效的方式构建实时数据管道,大大降低了数据集成复杂度。
flink-cdc 项目地址: https://gitcode.com/gh_mirrors/fl/flink-cdc
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考