Markup 注解工具使用教程
1. 项目介绍
Markup 是一个基于网络的文档注解工具,它可以用于将非结构化文档转换为结构化格式,以支持自然语言处理(NLP)和机器学习(ML)任务,例如命名实体识别。Markup 能够在学习您的注解过程中预测并建议复杂的注解,同时也提供了对常见和自定义本体(Ontologies)的集成访问,以便进行概念映射。
2. 项目快速启动
首先,确保您的系统中已安装了 Git 和 Node.js。
克隆仓库并安装依赖
git clone https://github.com/samueldobbie/markup.git && cd markup
yarn install
安装 Supabase CLI
# 安装 Supabase CLI
supabase init
# 启动 Supabase
supabase start
# 将生成的 API URL 和匿名密钥添加到 .env.local 文件中
配置环境变量
在项目根目录下创建一个 .env.local
文件,并添加以下内容:
SUPABASE_URL=your_supabase_url
SUPABASE_ANON_KEY=your_supabase_anon_key
OPENAI_API_KEY=your_openai_api_key # 可选
启动开发服务器
yarn start
访问应用
在您的网页浏览器中打开 http://localhost:3000
。
3. 应用案例和最佳实践
注解文档
- 打开 Markup 应用。
- 上传需要注解的文档。
- 根据需要,选择适当的注解类型和本体。
- 开始注解,Markup 会根据您的注解提供预测建议。
集成自定义本体
- 在 .env.local 文件中配置自定义本体的路径。
- 在 Markup 应用中加载自定义本体,以便在注解时使用。
4. 典型生态项目
以下是一些与 Markup 相关的生态系统项目:
- Supabase:一个开源的替代方案,为应用提供数据库、身份验证、存储等后端服务。
- OpenAI API:提供强大的自然语言处理能力,可以与 Markup 集成,以提供更加智能的注解建议。
请根据以上步骤和说明,开始使用 Markup 注解工具,并探索其在自然语言处理和机器学习领域的应用潜力。