Xitorch 开源项目教程

Xitorch 开源项目教程

xitorch Differentiable scientific computing library xitorch 项目地址: https://gitcode.com/gh_mirrors/xit/xitorch

1. 项目介绍

Xitorch 是一个基于 PyTorch 的开源库,提供了一系列可微分的函数和功能性,广泛应用于科学计算和深度学习领域。Xitorch 通过其强大的自动微分功能,使得科研人员在科学计算中能够更加方便地进行优化和根查找等操作。

2. 项目快速启动

首先,确保您的环境中已经安装了 Python(版本需大于等于 3.8.1 且小于 3.12)和 PyTorch(版本 1.13.1 或更高)。

接下来,可以通过以下命令安装 Xitorch:

pip install xitorch

或者,如果您希望直接从 GitHub 安装:

pip install git+https://github.com/xitorch/xitorch.git

如果您希望从源代码进行可编辑安装,可以使用以下步骤:

git clone https://github.com/xitorch/xitorch.git
cd xitorch
pip install -e .

3. 应用案例和最佳实践

以下是一个寻找函数根的简单示例:

import torch
from xitorch.optimize import rootfinder

def func1(y, A):
    # 示例函数
    return torch.tanh(A @ y + 0.1) + y / 2.0

# 设置参数和初始猜测
A = torch.tensor([[1.1, 0.4], [0.3, 0.8]]).requires_grad_()
y0 = torch.zeros((2, 1))

# 寻找根
yroot = rootfinder(func1, y0, params=(A,))

# 计算导数
dydA = torch.autograd.grad(yroot.sum(), (A,), create_graph=True)
grad2A = torchograd.grad(dydA.sum(), (A,), create_graph=True)

4. 典型生态项目

Xitorch 被广泛应用于不同的科学计算领域,其中一个典型的生态项目是 Differentiable Quantum Chemistry (DQC),它利用 Xitorch 进行量子化学计算的可微分性研究。

以上是 Xitorch 的基本教程,希望能够帮助您快速上手并开始使用这个强大的库。

xitorch Differentiable scientific computing library xitorch 项目地址: https://gitcode.com/gh_mirrors/xit/xitorch

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傅爽业Veleda

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值