TexasInstruments edgeai-yolox 项目使用教程

TexasInstruments edgeai-yolox 项目使用教程

edgeai-yolox edgeai-yolox 项目地址: https://gitcode.com/gh_mirrors/ed/edgeai-yolox

1. 项目的目录结构及介绍

本项目是基于 YOLOX 的一个开源项目,主要针对 Texas Instruments 处理器进行了优化。项目的目录结构如下:

  • assets/: 存放项目相关的资源文件。
  • datasets/: 存放数据集相关文件。
  • demo/: 包含演示脚本和示例数据。
  • docs/: 项目文档。
  • exps/: 存放不同任务配置的实验脚本。
  • pretrained_models/: 预训练模型文件。
  • tools/: 实用工具脚本,如训练、测试、评估等。
  • yolox/: 包含 YOLOX 核心代码。
  • .github/: GitHub 工作流文件。
  • README.md: 项目说明文件。
  • LICENSE: 项目许可证文件。
  • requirements.txt: 项目依赖文件。
  • setup.*: 项目设置脚本。

2. 项目的启动文件介绍

项目的主要启动文件是 setup.sh 脚本。这个脚本的主要功能是安装项目所需的依赖。

./setup.sh

执行该脚本会完成以下操作:

  • 安装 YOLOX 相关依赖。
  • 安装 pycocotools,这是一个用于处理 COCO 数据集的 Python 库。

3. 项目的配置文件介绍

项目的配置文件主要位于 exps/ 目录下,每个配置文件对应一种特定的任务或实验。这些配置文件是 JSON 格式,包含了任务所需的各个参数设置。

例如,一个名为 exp_yolox_2d_detection.json 的配置文件可能包含以下内容:

{
  "task": "2D Detection",
  "model": {
    "name": "YoloX",
    "params": {
      // 模型参数
    }
  },
  "data": {
    // 数据集相关参数
  },
  "train": {
    // 训练相关参数
  },
  "test": {
    // 测试相关参数
  }
}

在开始训练或测试之前,用户需要根据自己的需求修改这些配置文件中的相应参数。

通过以上介绍,用户可以初步了解如何使用 TexasInstruments edgeai-yolox 项目,并根据具体的任务需求进行配置和使用。

edgeai-yolox edgeai-yolox 项目地址: https://gitcode.com/gh_mirrors/ed/edgeai-yolox

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宣海椒Queenly

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值