TexasInstruments edgeai-yolox 项目使用教程
edgeai-yolox 项目地址: https://gitcode.com/gh_mirrors/ed/edgeai-yolox
1. 项目的目录结构及介绍
本项目是基于 YOLOX 的一个开源项目,主要针对 Texas Instruments 处理器进行了优化。项目的目录结构如下:
assets/
: 存放项目相关的资源文件。datasets/
: 存放数据集相关文件。demo/
: 包含演示脚本和示例数据。docs/
: 项目文档。exps/
: 存放不同任务配置的实验脚本。pretrained_models/
: 预训练模型文件。tools/
: 实用工具脚本,如训练、测试、评估等。yolox/
: 包含 YOLOX 核心代码。.github/
: GitHub 工作流文件。README.md
: 项目说明文件。LICENSE
: 项目许可证文件。requirements.txt
: 项目依赖文件。setup.*
: 项目设置脚本。
2. 项目的启动文件介绍
项目的主要启动文件是 setup.sh
脚本。这个脚本的主要功能是安装项目所需的依赖。
./setup.sh
执行该脚本会完成以下操作:
- 安装 YOLOX 相关依赖。
- 安装
pycocotools
,这是一个用于处理 COCO 数据集的 Python 库。
3. 项目的配置文件介绍
项目的配置文件主要位于 exps/
目录下,每个配置文件对应一种特定的任务或实验。这些配置文件是 JSON 格式,包含了任务所需的各个参数设置。
例如,一个名为 exp_yolox_2d_detection.json
的配置文件可能包含以下内容:
{
"task": "2D Detection",
"model": {
"name": "YoloX",
"params": {
// 模型参数
}
},
"data": {
// 数据集相关参数
},
"train": {
// 训练相关参数
},
"test": {
// 测试相关参数
}
}
在开始训练或测试之前,用户需要根据自己的需求修改这些配置文件中的相应参数。
通过以上介绍,用户可以初步了解如何使用 TexasInstruments edgeai-yolox 项目,并根据具体的任务需求进行配置和使用。
edgeai-yolox 项目地址: https://gitcode.com/gh_mirrors/ed/edgeai-yolox
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考