Rd Filters 使用教程
1. 项目介绍
Rd Filters 是一个开源项目,用于对化合物集合应用来自 ChEMBL 数据库的功能团过滤器以及 RDKit 的属性过滤器。该项目基于 Python 开发,可以方便地对化合物进行筛选,检查其是否符合特定的规则和属性。
2. 项目快速启动
安装
确保您的系统已安装 Python 3.6 或更高版本。接下来,安装 RDKit。推荐使用 conda 进行安装。
通过 GitHub 直接安装 Rd Filters:
pip install git+https://github.com/PatWalters/rd_filters.git
或者本地安装:
git clone https://github.com/PatWalters/rd_filters
cd rd_filters
pip install .
使用
运行脚本需要两个文件:alert_collection.csv
(结构警报集)和 rules.json
(配置文件)。
以下是查找这两个文件的逻辑:
- 使用命令行参数
--alert
和--rules
指定的位置。 - 检查当前目录。
- 检查环境变量
FILTER_RULES_DATA
指向的目录。
生成默认设置的 rules.json
:
rd_filters template --out rules.json
运行 Rd Filters:
rd_filters filter --in INPUT_FILE --prefix PREFIX [--rules RULES_FILE_NAME] [--alerts ALERT_FILE_NAME] [--np NUM_CORES]
其中:
INPUT_FILE
是输入的 SMILES 文件。PREFIX
是输出文件的前缀。RULES_FILE_NAME
是规则文件的名称(可选)。ALERT_FILE_NAME
是警报文件的名称(可选)。NUM_CORES
是使用的 CPU 核心数(默认为全部)。
示例:
rd_filters filter --in test.smi --prefix out
这将生成两个文件:out.smi
包含所有通过过滤器的化合物的 SMILES 字符串和分子名称;out.csv
包含计算出的属性值和触发的警报列表。
若要指定处理器数量:
rd_filters filter --in test.smi --prefix out --np 4
3. 应用案例和最佳实践
应用案例
- 筛选特定药效团或属性的化合物。
- 快速检查化合物是否触发特定的结构警报。
最佳实践
- 在运行之前,确保
alert_collection.csv
和rules.json
文件是最新的,并且符合您的筛选需求。 - 使用环境变量
FILTER_RULES_DATA
管理配置文件的位置,以便在多个项目之间共享。 - 考虑将结果输出文件
out.smi
和out.csv
用于进一步的化合物分析和数据处理。
4. 典型生态项目
Rd Filters 可以与其他化学信息学工具一起使用,例如:
- 与 RDKit 结合进行更复杂的化学数据分析和分子设计。
- 与 ChEMBL 数据库集成,获取更全面的化合物信息。
- 利用 Jupyter Notebook 进行交互式数据分析和可视化。
通过上述方法和工具,Rd Filters 能够在药物设计和化学研究领域发挥重要作用。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考