CLEAR项目使用教程
1. 项目目录结构及介绍
CLEAR项目是一个基于PyTorch的开源项目,其目的是通过一种名为CLEAR的策略,将预训练的扩散变换器(DiT)的复杂性线性化。以下是项目的目录结构及文件介绍:
CLEAR/
├── assets/ # 存储一些静态资源或预训练模型文件
├── LICENSE # 项目使用的Apache-2.0协议许可证
├── README.md # 项目说明文件
├── attention_processor.py # 注意力处理器相关的Python脚本
├── cache_latent_codes.py # 缓存潜在代码的Python脚本
├── cache_latent_codes.sh # 缓存潜在代码的Shell脚本
├── cache_prompt_embeds.py # 缓存提示嵌入的Python脚本
├── cache_prompt_embeds.sh # 缓存提示嵌入的Shell脚本
├── dataset.py # 数据集处理的Python脚本
├── deepspeed_config.yaml # DeepSpeed配置文件
├── distill.py # 知识蒸馏的Python脚本
├── distill.sh # 知识蒸馏的Shell脚本
├── inference_t2i.ipynb # 用于文本到图像推理的Jupyter笔记本
├── inference_t2i_highres.ipynb # 用于高分辨率图像推理的Jupyter笔记本
├── pipeline_flux_img2img.py # FLUX图像到图像处理管道的Python脚本
├── requirements.txt # 项目依赖的Python包列表
├── transformer_flux.py # FLUX变换器相关的Python脚本
2. 项目的启动文件介绍
项目的主要启动文件是distill.sh
脚本,该脚本用于启动知识蒸馏的过程。以下是一个简单的介绍:
distill.sh
:这个Shell脚本是启动知识蒸馏过程的入口点。它会调用Python脚本来执行蒸馏过程,其中涉及模型的训练和优化。
3. 项目的配置文件介绍
项目中包含的配置文件主要用来设置训练和推理的环境参数。以下是主要配置文件的介绍:
deepspeed_config.yaml
:DeepSpeed配置文件,用于配置分布式训练相关的参数,例如GPU的使用数量、训练批次大小等。
在开始使用项目前,你可能需要根据你的环境和需求来调整这些配置文件中的参数。例如,你可以在deepspeed_config.yaml
中修改GPU的数量和训练批次大小来适配你的计算资源。
确保在修改配置文件后,重新启动项目以应用新的配置。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考