ServerlessLLM安装与配置指南
ServerlessLLM 项目地址: https://gitcode.com/gh_mirrors/se/ServerlessLLM
1. 项目基础介绍
ServerlessLLM 是一个开源的服务端无服务器框架,旨在简化大型语言模型(LLM)的定制和弹性部署。它通过优化的全栈设计,从模型加载到存储层和集群调度,为LLM的部署提供了高效、快速和经济的解决方案。
主要编程语言:Python
2. 项目使用的关键技术和框架
- vLLM:支持多种AI硬件的LLM推理库。
- HuggingFace Transformers:用于自然语言处理的开源库。
- Ray Cluster:用于分布式计算的集群管理工具。
- Kubernetes:用于自动化部署、扩展和管理容器化应用程序的平台。
- KubeRay:在Kubernetes上部署Ray的解决方案。
3. 安装和配置准备工作
在开始安装之前,请确保您的系统中已安装以下依赖项:
- Python 3.10
- Conda(用于Python环境管理)
- Git(用于克隆项目仓库)
4. 安装步骤
步骤 1:克隆项目仓库
打开终端或命令提示符,执行以下命令来克隆项目仓库:
git clone https://github.com/ServerlessLLM/ServerlessLLM.git
步骤 2:创建Python环境
在项目根目录下,创建一个名为 sllm
的Python环境,并激活它:
cd ServerlessLLM
conda create -n sllm python=3.10 -y
conda activate sllm
步骤 3:安装ServerlessLLM
在激活的环境中,安装ServerlessLLM:
pip install serverless-llm
步骤 4:创建工作节点环境(可选)
如果您打算在分布式环境中使用ServerlessLLM,您还需要为工作节点创建一个环境,并安装相应的包:
conda create -n sllm-worker python=3.10 -y
conda activate sllm-worker
pip install serverless-llm[worker]
步骤 5:启动ServerlessLLM集群
按照项目提供的快速入门指南,启动一个本地ServerlessLLM集群。
步骤 6:进行测试和验证
确保集群正常运行后,您可以按照项目文档中的示例进行测试和验证。
以上步骤提供了一个基本的安装和配置指南,具体的细节和高级配置可能需要参考项目的官方文档和社区资源。
ServerlessLLM 项目地址: https://gitcode.com/gh_mirrors/se/ServerlessLLM
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考