深入解析Google FlatBuffers内部机制

深入解析Google FlatBuffers内部机制

flatbuffers FlatBuffers:内存高效的序列化库。 flatbuffers 项目地址: https://gitcode.com/gh_mirrors/fl/flatbuffers

什么是FlatBuffers

FlatBuffers是一种高效的跨平台序列化库,由Google开发。它允许你直接访问序列化数据而无需解析/解包步骤,这使得它在性能敏感的场景下特别有用。

核心设计理念

FlatBuffers的设计遵循几个关键原则:

  1. 零解析访问:数据可以直接从缓冲区读取,无需中间解析步骤
  2. 内存效率:数据以紧凑的二进制格式存储
  3. 跨平台兼容性:支持多种编程语言和平台
  4. 前向/后向兼容性:通过灵活的模式演进支持

二进制格式详解

基本组成

FlatBuffer是一个二进制格式,主要由以下部分组成:

  • 标量值:各种大小的基本数据类型(int8, int16, float等)
  • 对齐:所有数据都按其自身大小对齐
  • 小端序:统一采用小端序存储,确保跨平台兼容性

数据类型表示

FlatBuffers对数据类型有以下要求:

  • 浮点数使用IEEE-754标准
  • 有符号整数使用二进制补码表示
  • 浮点数和整数的字节序保持一致

偏移量系统

FlatBuffers使用偏移量系统来定位数据:

  • uoffset_t:无符号32位偏移量,用于指向表、联合、字符串和向量
  • soffset_t:有符号32位偏移量,用于指向vtable
  • voffset_t:无符号16位偏移量,用于vtable中的字段偏移

主要数据结构

结构体(Structs)

结构体是FlatBuffers中最简单的数据结构:

  • 总是内联存储在父结构中
  • 有固定的内存布局
  • 所有成员按其大小对齐
  • 结构体本身按最大成员对齐
  • 不支持版本控制和扩展性

表(Tables)

表是FlatBuffers中最灵活的数据结构:

  • 通过偏移量引用,不内联存储
  • 使用vtable实现字段访问
  • 支持可选字段
  • 字段顺序不固定
  • 支持版本控制和扩展
vtable结构

vtable包含以下信息:

  1. vtable大小(字节数)
  2. 对象大小(字节数)
  3. 各字段的偏移量(N个,N为模式中定义的字段数)

联合(Unions)

联合由两部分组成:

  1. 枚举值表示当前选择的类型
  2. 指向实际数据的偏移量
  3. 保留NONE(0)表示未设置

字符串和向量

  • 字符串:字节向量,总是以null结尾
  • 向量:连续对齐的标量元素,前缀为32位元素计数
  • 都通过偏移量引用,不内联存储

编码示例

以下是一个简单的JSON对象及其FlatBuffers编码:

{
  "pos": { "x": 1, "y": 2, "z": 3 },
  "name": "fred",
  "hp": 50
}

对应的二进制编码:

// 缓冲区起始
20  // 根表偏移量

// vtable起始
16  // 表大小
22  // 对象内联数据大小
4, 0, 20, 16, 0, 0  // 字段偏移量

// 根表起始
16     // vtable偏移量
1, 2, 3  // Vec3结构体内联数据
8     // 名字字符串偏移量
50    // hp字段值
0     // 对齐填充

// 名字字符串起始
4  // 字符串长度
'f', 'r', 'e', 'd', 0, 0, 0, 0  // 文本+终止符+填充

FlexBuffers简介

FlexBuffers是FlatBuffers的无模式版本,具有以下特点:

  1. 数据从前向后构建
  2. 标量数据使用可变位数(8/16/32/64)
  3. 只有一种偏移量类型(无符号整数)
  4. 根数据从最后一个字节开始

向量编码

FlexBuffers中的向量编码示例(值1,2,3):

3, 1, 2, 3, 4, 4, 4
  • 第一个3是大小字段
  • 后面是3个类型字节(每个元素一个)

类型系统

类型字节由两部分组成:

  1. 低2位表示子元素的位宽(8/16/32/64)
  2. 高6位表示实际类型

性能优化建议

  1. 结构体vs表:对性能关键且不需要扩展的数据使用结构体
  2. 字段顺序:将常用字段放在模式前面,可能提高访问速度
  3. 默认值:合理使用默认值可以减少序列化数据大小
  4. 向量优化:对同类型数据使用类型化向量

总结

FlatBuffers通过其独特的内存布局和访问机制,实现了高效的序列化和反序列化。理解其内部工作原理有助于开发者更好地利用其特性,构建高性能的应用程序。无论是需要严格模式的FlatBuffers还是灵活的无模式FlexBuffers,都提供了针对不同场景的优化解决方案。

flatbuffers FlatBuffers:内存高效的序列化库。 flatbuffers 项目地址: https://gitcode.com/gh_mirrors/fl/flatbuffers

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏玥隽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值