LION项目安装与使用教程
1. 项目目录结构及介绍
LION项目是一个用于3D对象检测的点云处理工具,其目录结构如下:
assets/
: 存储项目相关的资源文件。data/
: 包含训练和测试数据集。docs/
: 项目文档,包括论文和相关说明。pcdet/
: 包含点云检测的核心代码。tools/
: 存储项目的工具脚本,例如训练和评估脚本。.gitignore
: 指定Git应该忽略的文件和目录。LICENSE
: 项目使用的Apache-2.0许可证文件。README.md
: 项目说明文件。requirements.txt
: 项目依赖的Python包列表。run_create.sh
: 创建项目所需环境的脚本。setup.py
: 设置项目环境和依赖的Python脚本。
2. 项目的启动文件介绍
项目的启动文件主要是tools/
目录下的各个.sh
脚本,以下是一些主要脚本的介绍:
run_train_lion_for_nus.sh
: 在nuScenes数据集上启动LION模型的训练。run_train_lion_for_waymo.sh
: 在Waymo数据集上启动LION模型的训练。run_train_lion_for_argov2.sh
: 在Argoverse V2数据集上启动LION模型的训练。run_train_lion_for_once.sh
: 在ONCE数据集上启动LION模型的训练。run_train_lion_for_kitti.sh
: 在KITTI数据集上启动LION模型的训练。
这些脚本通常会设置训练参数,调用训练脚本,并开始训练过程。
3. 项目的配置文件介绍
项目的配置文件位于config/
目录下,这些文件定义了模型的结构、训练参数、数据集路径等。以下是一些主要配置文件:
config.yaml
: 包含了模型的配置信息,如模型类型、训练和测试参数、数据增强等。nus_retnet.yaml
: nuScenes数据集上使用RetNet模型的配置文件。nus_mamba.yaml
: nuScenes数据集上使用Mamba模型的配置文件。argov2_retnet.yaml
: Argoverse V2数据集上使用RetNet模型的配置文件。
用户可以根据自己的需求修改这些配置文件,以适应不同的训练场景和数据集。
在开始使用LION项目之前,请确保已经安装了所有必要的依赖项,并且正确配置了环境。可以通过执行requirements.txt
中列出的Python包来进行安装,并使用setup.py
来设置项目环境。随后,可以通过运行上述脚本文件来启动训练过程。
创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考