LION项目安装与使用教程

LION项目安装与使用教程

LION [NeurIPS 2024] Official code of ”LION: Linear Group RNN for 3D Object Detection in Point Clouds“ LION 项目地址: https://gitcode.com/gh_mirrors/lion12/LION

1. 项目目录结构及介绍

LION项目是一个用于3D对象检测的点云处理工具,其目录结构如下:

  • assets/: 存储项目相关的资源文件。
  • data/: 包含训练和测试数据集。
  • docs/: 项目文档,包括论文和相关说明。
  • pcdet/: 包含点云检测的核心代码。
  • tools/: 存储项目的工具脚本,例如训练和评估脚本。
  • .gitignore: 指定Git应该忽略的文件和目录。
  • LICENSE: 项目使用的Apache-2.0许可证文件。
  • README.md: 项目说明文件。
  • requirements.txt: 项目依赖的Python包列表。
  • run_create.sh: 创建项目所需环境的脚本。
  • setup.py: 设置项目环境和依赖的Python脚本。

2. 项目的启动文件介绍

项目的启动文件主要是tools/目录下的各个.sh脚本,以下是一些主要脚本的介绍:

  • run_train_lion_for_nus.sh: 在nuScenes数据集上启动LION模型的训练。
  • run_train_lion_for_waymo.sh: 在Waymo数据集上启动LION模型的训练。
  • run_train_lion_for_argov2.sh: 在Argoverse V2数据集上启动LION模型的训练。
  • run_train_lion_for_once.sh: 在ONCE数据集上启动LION模型的训练。
  • run_train_lion_for_kitti.sh: 在KITTI数据集上启动LION模型的训练。

这些脚本通常会设置训练参数,调用训练脚本,并开始训练过程。

3. 项目的配置文件介绍

项目的配置文件位于config/目录下,这些文件定义了模型的结构、训练参数、数据集路径等。以下是一些主要配置文件:

  • config.yaml: 包含了模型的配置信息,如模型类型、训练和测试参数、数据增强等。
  • nus_retnet.yaml: nuScenes数据集上使用RetNet模型的配置文件。
  • nus_mamba.yaml: nuScenes数据集上使用Mamba模型的配置文件。
  • argov2_retnet.yaml: Argoverse V2数据集上使用RetNet模型的配置文件。

用户可以根据自己的需求修改这些配置文件,以适应不同的训练场景和数据集。

在开始使用LION项目之前,请确保已经安装了所有必要的依赖项,并且正确配置了环境。可以通过执行requirements.txt中列出的Python包来进行安装,并使用setup.py来设置项目环境。随后,可以通过运行上述脚本文件来启动训练过程。

LION [NeurIPS 2024] Official code of ”LION: Linear Group RNN for 3D Object Detection in Point Clouds“ LION 项目地址: https://gitcode.com/gh_mirrors/lion12/LION

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芮瀚焕

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值